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Extinction risk varies across species and space owing to the combined and interactive effects of ecology/life

history and geography. For predictive conservation science to be effective, large datasets and integrative

models that quantify the relative importance of potential factors and separate rapidly changing from relatively

static threat drivers are urgently required. Here, we integrate and map in space the relative and joint effects of

key correlates of The International Union for Conservation of Nature-assessed extinction risk for 8700 living

birds. Extinction risk varies significantly with species’ broad-scale environmental niche, geographical range

size, and life-history and ecological traits such as body size, developmental mode, primary diet and foraging

height. Even at this broad scale, simple quantifications of past human encroachment across species’ ranges

emerge as key in predicting extinction risk, supporting the use of land-cover change projections for estimat-

ing future threat in an integrative setting. A final joint model explains much of the interspecific variation in

extinction risk and provides a remarkably strong prediction of its observed global geography. Our approach

unravels the species-level structure underlying geographical gradients in extinction risk and offers a means of

disentangling static from changing components of current and future threat. This reconciliation of intrinsic

and extrinsic, and of past and future extinction risk factors may offer a critical step towards a more

continuous, forward-looking assessment of species’ threat status based on geographically explicit

environmental change projections, potentially advancing global predictive conservation science.
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1. INTRODUCTION
A central goal in conservation biology is to understand

why some species are more vulnerable to extinction

than others [1]. Uncovering the underlying threats and

processes behind current species declines could improve

our predictions of future declines thereby making conser-

vation efforts more effective. The International Union for

Conservation of Nature (IUCN) Red List of threatened

species offers a reasonably standardized estimate of

global extinction risk under past and recent conditions

[2]. Broad-scale studies have demonstrated that this

measure covaries with intrinsic ecological and life-history

traits such as body size (e.g. [3,4]). For instance, large-

bodied mammals appear to be particularly vulnerable to

extinction [5]. Certain intrinsic attributes such as gener-

ation time and population growth rate (which are also

associated with body size; [6]) are implicitly incorporated

into threat assessments [7]. However, these attributes

may not be independent of environmental conditions

[8]. Separately, extrinsic environmental or geographical

factors such as climatic variables and human population

density may also play a critical role in species

endangerment [9].
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The structure of global extinction risk in species is thus

characterized by complex inter-relationships among cor-

relates [10]. But, to date, extinction risk correlates are

rarely isolated, which limits our understanding of how

threats vary across scale, taxa and types of potential dri-

vers (e.g. [11]). Intrinsic traits such as species ecology

and extrinsic factors such as habitat loss may also interact

strongly with geographical range (and population) size to

affect extinction risk [12]. Threat thus varies across

species and space owing to the combined and interactive

effects of a broad array of ecological/life-history (intrinsic,

usually slowly evolving) and geographical (extrinsic,

potentially rapidly changing) factors [13]. To avoid spur-

ious correlations, it becomes necessary to quantify the

interdependencies between threat and human encroach-

ment, and between threat and range size while

simultaneously considering the influence of other

determinants of extinction risk [1].

Geographical range size has consistently emerged as

the key correlate of extinction risk in mammals and

amphibians [4,10,14,15]. This is true even among species

that are red-listed for reasons other than having very

narrow geographical distributions (i.e. criteria B;

[4,7,14]). This underscores the significance of developing

an explicit measure of past anthropogenic changes to geo-

graphical range area [16]. Such a quantity, e.g. human

‘encroachment’, would quantify the proportion of a geo-

graphical range that has experienced land-cover
This journal is q 2010 The Royal Society
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transformations because of past human activities (e.g.

agriculture and urbanization). This simple measure can

be extended to project species extinction risk by estimat-

ing future encroachment that could facilitate spatially

explicit future conservation planning. Undoubtedly,

future extinction risk will benefit as more accurate

models of future land-cover transformations become

available [17], and our understanding of species

responses to projected change improves, e.g. through

incorporation of stochastic population models [18].

As we will demonstrate here, the appreciation of joint

intrinsic/extrinsic determination of species-level extinc-

tion risk also facilitates a more structured and process-

based understanding of geographical gradients in average

extinction risk across assemblages (species co-occurring

in, e.g. a grid cell). Modelling the spatial pattern of

threat as a summary response (e.g. proportion of species

threatened, [19]) is popular but inference is biased by

pseudoreplication and spatial autocorrelation owing to

large differences in geographical range size, i.e. wide-

ranging species masking the patterns of narrow-ranged

ones [20]. Therefore, we argue it is critical to under-

stand the model of threat at the species level before

assessing observed assemblage threat and how it may

be explained by the compound predictions of its

inhabitant species [21]. This approach promotes a

more mechanistic understanding of the geography of

extinction risk ‘hotspots’ worldwide, and by simul-

taneously pinpointing species and regions, it may help

integrate region- and species-focal conservation

prioritization efforts.

In order to quantify and disentangle dynamic (e.g.

anthropogenic activities) from largely static (e.g. body

size) extinction risk factors to make future predictions,

large, ideally global, datasets and integrative modelling

approaches are needed. Here, we use the largest set of

species to date to integrate and map in space the relative

and joint effects of key correlates of endangerment and

range encroachment. We assess all 8664 extant terres-

trial and freshwater bird species (i.e. 90% of all birds),

10 per cent (858 species) of which are considered

‘threatened’ (IUCN Red List status of Critically Endan-

gered, Endangered or Vulnerable; [7]). In contrast to

mammals and amphibians (e.g. [4]), a global assessment

of species-level extinction risk correlates in birds is cur-

rently missing (but see [11] for analysis at family level).

Birds have undergone a high rate of past extinctions,

particularly on islands, and breeding populations are

currently exposed to threats from anthropogenic activi-

ties (e.g. land-use change) worldwide [22,23]. This

grim outlook is exacerbated by the future range losses

projected owing to climate and land-use change [17].

Population declines and species extinctions may have

devastating ecological consequences by disrupting key

ecosystem processes such as decomposition, pollination

and seed dispersal [24]. Using a binary risk categoriz-

ation as response, we ask the following questions:

(i) what is the relative importance of intrinsic versus

extrinsic predictors of extinction risk? (ii) how much

extinction risk can be attributed to human encroach-

ment of geographical ranges alone? and (iii) how

successful are species-based statistical models in captur-

ing the geographical variation, e.g. the hotspots, of

extinction risk worldwide?
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2. MATERIAL AND METHODS
(a) Data

(i) Extinction risk and geographical distributions

We defined a binary extinction risk variable with species

listed as Least Concern and Near Threatened as ‘Not Threa-

tened’ and those listed as Vulnerable, Endangered and

Critically Endangered as ‘Threatened’ (2008 IUCN Red

List; http://www.iucnredlist.org/). We excluded species listed

as Extinct, Extinct in the Wild and Data Deficient because

of the unavailability of predictor variables. All marine

species, newly described species, those involved in recent

splits and lumps, and others for which we did not have breed-

ing range maps or have nomenclature inconsistencies are not

included. This resulted in a final list of 8664 species for our

analysis (electronic supplementary material, appendix S1).

For select analyses, we removed 345 species that were

red-listed (Threatened) owing to observed declines in

geographical range sizes (i.e. criteria B; [9]). Breeding distri-

butions were compiled from the most accurate sources giving

expert opinion range (extent of occurrence) maps [21] and

are used for environmental extractions and mapping the

geography of threat (see below).

(ii) Correlates of extinction risk

We assembled a database of extinction risk correlates deemed

to be important in predicting bird extinction risk, population

decline or sensitivity to habitat modification (table 1 and

electronic supplementary material, table S1).

— Encroachment. We defined encroachment as the pro-

portion of geographical range size transformed by past

human activities (i.e. cultivated or managed, mosaics

including cropland and urban areas). By overlaying the

breeding range in a gridded format for each species with

information on transformed habitats owing to anthropogenic

activities from the Global Land Cover 2000 land-cover classi-

fication (1 km2 resolution), we quantified encroachment

across all species.

— Geographical range size. We projected the world map to an

equal-area grid in 0.018 resolution and calculated the true

area (in km2) of each 0.018 grid cell. Range size was then

obtained by summing up the area of all grid cells

occupied by a species.

— Island range. We totalled the true area of ‘island’ (oceanic

geological origin or distant continental/island states) grid

cells that were occupied by each species and calculated

island range as the proportion of a species’ geographical

range size.

— Intrinsic traits. Ecological and life-history traits include the

following: body mass, clutch size, development mode

(precocial or altricial), diet type (five primary categories)

and breadth (up to seven categories), nest-cover type

(non-closed or closed) and location (ground and inter-

mediate, or high), migratory behaviour (non-migrants

or migrants), activity (diurnal or nocturnal), foraging

height (seven possible classes) and breadth (up to five

classes) and habitat breadth (up to 25 types). Species-

typical values of intrinsic traits for bird species are

compiled from a variety of sources [21].

— Extrinsic factors. We used the maps of breeding ranges

described above and global environmental layers to

characterize broad-scale extrinsic factors. We extracted

range centroid, mean actual evapo-transpiration (AET),

seasonality of temperature (TempMax2 TempMin),

http://www.iucnredlist.org/
http://www.iucnredlist.org/


Table 1. Predictors of extinction risk—detailed SEM results. (Listed are standardized coefficients of correlates, variance

explained for the three responses and other results. We analysed 8664 terrestrial and freshwater species. Coefficient in bold
indicates that Z-value is significant (p , 0.05). Within-family indicates that shared ancestry is controlled for at the family
level. ‘Migrant’ and ‘island’ include species that carry out altitudinal and intra- and inter-continental migration, and species
that have at least 90% of their breeding range on non-continental islands, respectively. Reliability coefficient measures how
well-measured each latent variable is by its indicators and should ideally be at least 0.7 (see electronic supplementary

material, table S1). The strength of the coefficient generally points to more stable estimates among indicators for a latent
variable (see text). Intra-class correlation measures the extent of nestedness in each model. n.a., not applicable.)

all species within-family within-family

cross-species within-family non-migrant migrant mainland island

correlate
range size 20.58 20.63 20.54 20.58 20.61 20.39

encroachment 0.26 0.22 0.27 0.23 0.26 0.19

life history 0.24 0.19 0.32 0.11 0.20 0.41

ecological niche 0.15 0.14 20.02 0.08 0.12 0.23
niche breadth 20.15 20.08 20.19 20.05 20.25 0.03
environmental niche 0.22 0.24 0.17 0.42 0.38 0.11

variance explained

extinction risk 0.49 0.47 0.50 0.48 0.56 0.50
encroachment 0.73 0.67 0.73 0.54 0.66 0.75
range size 0.53 0.38 0.41 0.04 0.36 0.47

other details
group size 8664a 6952 1712 6980 1684
number of threatened/

non-threatened species

858a/7806a 747/6205 109/1603 574/6406 282/1402

number of free parameters 54 57 88b 88b

intra-class correlation n.a. 0.16 0.08b 0.02b

reliability coefficient
life history 0.86 0.67 0.67 0.83 0.69 0.53

ecological niche 0.88 0.80 0.80 0.82 0.81 0.81
niche breadth 0.01 0.01 0.08 0.01 0.29 0.01
environmental niche 0.88 0.85 0.78 0.92 0.85 0.72

aSimilar values are listed for different models.
bSimilar values are listed for identical models.
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minimum elevation and potential elevation range

(ElevationMax2 ElevationMin) and mean human influ-

ence index (a composite measure of multiple human

activities that include urban extent, population density,

roads, navigable rivers and agricultural land; Last of the

WILD DATA v. 2 2005) across each species’ range. All

data extractions were performed using the ESRI ARC

and GRID software (v. 9.0; [25]). For additional details

and sources of correlates, see the electronic

supplementary material.
(b) Statistical analysis

(i) Structural equation model

We integrated our understanding of the correlates of bird

extinction risk in a single-analysis framework using a multile-

vel structural equation model (SEM) for binary responses.

SEM represents a multivariate statistical method that com-

bines factor and path analyses to assess multiple causal

pathways by analysing covariance among variables [26].

SEM is an ‘a priori’ technique that allows direct testing of

hypothesized mechanisms supported by existing knowledge

about expected linkages and allows theoretical multi-

dimensional concepts to be characterized (via a method

similar to factor analysis) by single entities or latent variables

[27]. In this study, body mass, clutch size, nest type and

height, and development mode are used to model the latent
Proc. R. Soc. B (2011)
(unobservable) variable ‘life history’. The ‘ecological-niche’

latent variable is a combination of body mass, diet type,

activity and forage height class, characterizing where, when

and what the species forages on. The ‘niche-breadth’ latent

variable is a combination of diet, habitat and foraging height

breadths, representing the niche width of a species (generalist

or specialist). Finally, the ‘environmental-niche’ latent variable

is a combination of mean AET and seasonality, minimum

elevation and potential elevational range, quantifying the

environmental conditions observed within its geographical

range. We carried out path analysis for individual correlates

to examine direction and significance of their relationship

with extinction risk (electronic supplementary material, table

S1). The significant variables are in turn selected to load

onto the respective latent variable, which are then analysed

in the SEM. Each latent variable should be meaningfully

represented and well measured by its correlates (table 1).

Overall, SEM can test the statistical adequacy of a proposed

causal model.

SEM was performed using the M-PLUS program v. 5.1

[28]. For our analyses, we specified a logit model (binary

response) and maximum likelihood as the estimation

method, assuming that any missing data for our correlates

are missing at random (electronic supplementary material,

table S1). Phylogeny is a potential confounding factor in

our analyses since close relatives tend to be more similar to

each other than expected by chance [1]. However, because
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we do not have a robust dated phylogeny for birds, we par-

tially address the phylogenetic non-independence in our

dataset using taxonomy in the form of multilevel SEM

[29]. Here, species are nested in families (‘within-family’;

species in family clusters), where most variation for key

intrinsic traits occurs [30]. Cross-species (not controlled

for species relatedness) results are also provided for compari-

son. In addition, we repeated the within-family analysis

grouping birds by (i) migratory tendency and (ii) isolation

extent on islands (table 1) to see how this influenced

correlates of extinction risk.
(ii) Mixed-effect model

For comparison, we also performed generalized linear mixed-

effect modelling (GLMM) to identify the key correlates of

extinction risks in birds with ‘family’ as a random effect

(i.e. within-family). We also evaluated cross-species and

within-family–order (shared ancestry at the order–family

level) models (electronic supplementary material, table S2),

although we focus on the within-family results. GLMM

yields results that are more tractable, practical and compar-

able with previous studies using only generalized linear

models. Further, we can corroborate the SEM results and

derive model predictions that are otherwise not directly

attainable in the M-PLUS implementation of SEM with

binary responses. By using two separate statistical tech-

niques, we are able to provide complementary approaches

to understand the drivers of threat across species and

space. We calculated a series of standard goodness-of-fit

measures to assess model fits (electronic supplementary

material, table S2 and figure S4). Based on species range

centroids, global Moran’s I (0.03–0.19) and correlogram

indicate minimal to negligible remaining spatial auto-

correlation in model residuals (Moran’s I ¼ 0.0006–0.059;

electronic supplementary material, figure S6a,b). However,

unlike the SEM analyses, we did not evaluate the extinction

risk correlates in birds grouped by migratory tendency or

isolation extent on islands.
(iii) Geography of threat

We assessed how well species-level model predictions can

explain the observed geographical gradient in average extinc-

tion risk worldwide. Linking geographical distribution data

to model predictions, we generated the predicted assemblage

extinction risk by averaging the species-level predicted prob-

ability of extinction risk (from the within-family mixed-effect

model) across all members of an assemblage. We tested the

concordance between observed (proportion of threatened

species within an assemblage) and predicted assemblage

extinction risks with simple regression analyses across

13 156 assemblages and space. We also evaluated the

effects of species richness and average range size on the

association. We further accounted for the very strong spatial

autocorrelation structure in the model residuals (electronic

supplementary material, figure S5c,d) by carrying out a

spatial linear regression model using a bootstrapping

approach. All analyses were carried out using R v. 2.8.1

[31] unless otherwise stated, while global maps were pro-

duced using ARCMAP v. 9.3. See electronic supplementary

material for more details on data analyses, and observed

and predicted extinction risk and encroachment data for all

species included in the analyses (electronic supplementary

material, appendix S1).
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3. RESULTS AND DISCUSSION
(a) A general structural model

Building on previous conceptual and empirical work (e.g.

[11]), we present a working model of structural relation-

ships among core extinction risk correlates in birds

(figure 1 and electronic supplementary material, table S1).

We identify six main sets of drivers of binary extinction

risk: encroachment, geographical range size and four

latent variables (life history, ecological niche, niche

breadth and environmental niche). We expect the

human influence index to have an indirect effect on

‘threat’ through encroachment, i.e. the proportion of a

species’ geographical range that has undergone anthropo-

genic land-cover transformation. We use this index to

predict encroachment because it is a composite measure

that summarizes and captures the extent of multiple

human activities (including roads). It also serves as an

‘independent’ corroboration of the degree of human

impacts beyond those arising from agricultural lands

and urban areas (which are quantified by the variable

encroachment). Similarly, we allow for niche breadth

and environmental-niche latent correlates to have indirect

effects on threat via their interaction with encroachment

and geographical range size. We also include additional pos-

tulated correlations among the latent variables (figure 1).

We posit that this working model offers a simple, yet

sound representation of the main interdependencies

among core broad-scale drivers of avian extinction risk

that are currently quantifiable at a global scale.
(b) General predictors of extinction risk in birds

A SEM of bird species that accounts for shared ancestry

at the family level (within-family) supports almost all of

the hypothesized linkages (figure 1). All but one

structural relationship is significant (electronic supplemen-

tary material, figures S1, S2 and table S1). The empirical

model reveals that geographical range size, the environ-

mental-niche latent variable, encroachment, and the life-

history and ecological-niche latent variables (in decreasing

order of importance) are the most significant correlates of

extinction risk across 8664 bird species and explain 47 per

cent of the SEM variance in threat status (figure 1 and

table 1). The significant effect of ecological niche disap-

pears in a cross-species SEM that does not consider the

phylogenetic relatedness of species. The SEM variance

explained in the cross-species model is larger for the sec-

ondary responses (i.e. encroachment and range size;

table 1), suggesting phylogenetic conservatism in these

variables. Indeed, this shows that species with shared

ancestry may also be spatially clustered or occur in similar

regions. Nevertheless, we acknowledge that in the absence

of a comprehensive bird phylogeny, we are unable to

quantify the full phylogenetic signal in bird extinction

risk. These main SEM results were corroborated by a

within-family mixed-effect model (figure 2; electronic

supplementary material, table S2 and figure S3).

Even after controlling for the covariation among corre-

lates, range size still emerges as the strongest predictor of

extinction risk, confirming previous findings in birds [12],

amphibians [15] and mammals [14]. This trend is robust

to the removal of the 345 species that are red-listed owing

to observed declines in geographical range sizes (i.e. cri-

teria B; electronic supplementary material, table S3).
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Therefore, our results include all species in order to maxi-

mize the sample size. Species with restricted range sizes

are often characterized by small population sizes and

high habitat specialization, so they generally are more vul-

nerable to extinction from stochastic, demographic and

environmental processes [32]. Here, we find an effect of

range size above and beyond that of niche breadth

(figure 1).

Assessing the structure underlying the documented

latent variables highlights a combination of putative

extinction risk drivers. The effects of life-history and eco-

logical-niche latent variables on threat are owing to large

body size and precocial (i.e. young are relatively mobile,

covered in feathers and independent) development

mode, certain diet (vertebrate, omnivorous, plant

materials or seeds compared with invertebrate) and fora-

ging height preferences (restricted to ground and water

level compared with multiple levels), respectively (elec-

tronic supplementary material, figure S1). Larger birds

may be more extinction prone because of their smaller

population sizes, lower reproductive rates, larger home-

range requirements or have higher trophic levels exposing

them to extinction threats such as hunting (e.g. [33]).

The higher extinction risk in precocial birds may be

owing to lack of parental protection, particularly against

human-introduced nest predators in disturbed land-

scapes, compared with altricial species (e.g. [34]). The

effect of the environmental-niche latent variable on
Proc. R. Soc. B (2011)
threat is driven by AETand seasonality (i.e. species occu-

pying low mean AET and high mean seasonality regions

are more threatened; electronic supplementary material,

figure S1). Their effects on extinction risk are strong

even after accounting for the separate influences exerted

by range size and encroachment.

Encroachment and the ensuing loss of habitat and

niche space [35] has been noted as a predictor of extinc-

tion risk in numerous smaller scale studies and in

quantitative analyses on forest birds [16] as well as

range-restricted birds [36]. Its relative importance

across all birds in explaining threat above and beyond

other (covarying) intrinsic and extrinsic effects is

confirmed in our structural model (figure 1). Range

encroachment increases with increasing human influence

index, providing independent corroboration on the degree

of anthropogenic influence across all species (figure 1 and

electronic supplementary material, figure S2). While

estimates of encroachment will improve with more

advanced satellite products, our results demonstrate the

potential of remotely sensed estimates of anthropogenic

impacts to assess extinction risk at a global scale and

species level. Our findings validate and highlight this gen-

eral approach as a rewarding and potentially

transformative avenue for future threat assessments.

Combining the effects of all predictors, at the species

level, the median predicted probability of extinction risk for

threatened versus non-threatened species is 0.6 and 0,
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respectively (figure 3a). The within-family mixed-effect

model validates our SEM approach and explains almost 44

per cent of the deviance in the data with reasonably good pre-

dictive quality (e.g. Cohen’s k ¼ 0.64, area under the

curve ¼ 0.95; electronic supplementary material, figure S4

and table S2). Using an extinction risk probability cut-off

of 0.5, we show that our model performed very well in pre-

dicting species of low conservation concern (specificity

0.98) but only reasonably well for those that are extinction

prone (sensitivity 0.58; electronic supplementary material,

table S2). This suggests that although our model is useful

(and sensitivity increases with changes in prediction

threshold), it cannot perfectly account for all predictors of

global extinction risk in birds (e.g. population size). For

example, threats from stochastic, demographic and environ-

mental processes that IUCN aims to at least qualitatively take

into account in its categorization are not included in our

model [37]. Alternatively, the low sensitivity value for extinc-

tion-prone species appears to be common [10], and it may

be owing to there being many fewer threatened species avail-

able for modelling, relative to those that are not threatened.

Our integrative approach offers a framework for incor-

porating dynamic information such as land-cover changes

along with existing, relatively static life-history and eco-

logical correlates of extinction risk into ongoing threat

assessments. With mounting interest in understanding

the impacts of projected global environmental change

on biodiversity [38], a modified measure that captures

projected anthropogenic encroachment should be valu-

able and provide an alternative for making extinction

predictions into the future.

Non-migratory and island birds have been suggested to

have particularly high extinction risk [39,40]. For island
Proc. R. Soc. B (2011)
birds (defined here as species with at least 90% of their

range on oceanic geological origin or distant continental/

island states), we find these assertions confirmed at the

global scale, as they are disproportionately more threa-

tened than expected (17% of island birds versus 8%

of mainland birds are threatened; x2
1 ¼ 109.7, p , 0.01;

table 1). Migrant species (defined here as species that per-

formed altitudinal or continental migrations) are less

threatened than expected (6% of migrants versus 11% of

non-migrants are threatened; x2
1 ¼ 29.1, p , 0.01;

table 1; see also [40]). As the broad ecological differences

between these groups may show interactions with extinc-

tion risk correlates [5], we provide separate assessments

of their extinction risk structure.

Two interesting discrepancies with the group analyses

emerge. First, in migrants, the environmental-niche

latent variable and encroachment (of breeding range)

are stronger predictors of extinction risk than in non-

migrants. This confirms suggestions that species which

carry out long migrations may be particularly vulnerable

to alterations of habitats or climatic conditions in their

breeding range (table 1 and electronic supplementary

material, table S3; [41]). Second, the effect of life-history

latent variable on extinction risk is especially strong in

island birds (table 1 and electronic supplementary

material, table S3). Indeed, extinct native island birds

generally are large and often flightless, making them sus-

ceptible to being hunted by humans and preyed upon by

exotic mammalian predators [39]. Compared with main-

land species, extinction risk in island birds is poorly

predicted by extrinsic factors. This is consistent with the

finding that human population density is a better predic-

tor of threat level in birds in continental than in island

nations [42]. This also supports observations in Pacific

islands where extant endangered island species may be

exposed to similar ecological pathways that lead to extinc-

tion since they possess many of the same ecological

characteristics of extinct birds [43].
(c) The geography of threat and its predictors

How well can this species-level assessment predict

observed geographical gradients in extinction risk? Our

map of observed proportion of threatened species con-

firms known gradients in extinction risk ([19];

figure 4a). Following the approach of Jetz et al. [21], we

calculate predicted average assemblage extinction risk

based on the extinction risk probabilities predicted by

our within-family mixed-effect model for each species in

an assemblage (or geographical grid).

We find a positive association between predicted and

observed assemblage extinction risk that is strongly

mediated by assemblage richness (number of species

co-occurring within a grid cell; figure 3b). As expected,

average predicted assemblage risk is more variable and

provides a weaker fit in low-richness regions where

fewer predictions lead to a less stable average. The fits

between observed and predicted extinction risks increase

towards more diverse assemblages where risk is also pro-

portionally lower (figure 3b). More interestingly,

assemblage risk in low-richness areas (10–90 species) is

consistently over-predicted by our model, with slopes

below the 1 : 1 line (b ¼ 0.17, tb¼1 ¼ 228.0; F1,3274 ¼

33.7; figure 3b). By contrast, for assemblages with greater
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than 240 species, the model predicts the risk level much

better (e.g. b¼ 0.83, tb¼1¼ 14.7; F1,3306¼ 5226;

figure 3b). This interaction between risk prediction and

richness in explaining assemblage risk is confirmed statisti-

cally (x¼ 22.86 2 0.85y þ 1.04zþ 0.68y : z, where x is

the observed and y is the predicted proportion of threatened

species and z is log (species richness); Akaike Information

Criteria (AIC); AICmodel 21051; AICmodel without interaction

2155; AICnull 2234) and holds even after accounting for

strong spatial autocorrelation signals (see the electronic sup-

plementary material). This may imply that additional

community-level effects that our analyses ignore (e.g.

species interactions such as competition; [44]) result in

species in diverse communities to be more threatened

than a species-level analysis would suggest. But alternatively,

this pattern may simply be a consequence of the predomi-

nance of wide-ranging species in the least diverse areas

where under-prediction of only a few of such species are

required to drive this pattern across extended regions

[20]. Partial support for this idea comes from a significant

effect of average log-transformed geographical range

size of species as an additional predictor of assemblage

extinction risk (x¼ 1.68þ 3.57y 2 0.33z 2 0.43y : z,

where z is average log range size; AICmodel 2 1601;

AICmodel without interaction 2 1247; AICnull 2234).

In geographical terms, we find some broad concor-

dance between the observed and predicted geography

of threat in South America, Africa and East and

South Asia (figure 4a,b). The residual map illustrates

that regions of under- and over-prediction of assem-

blage extinction risks are predominantly outside the

tropics (except southeast Asia) and near the poles, in

areas of lower conservation concern (figure 4c). Above

all, the assemblage risk predictions correspond very

well with those observed in certain areas where the

extinction risk is most severe (red shades, figure 4a,b;

off-white, figure 4c) and where conservation actions

are most urgently needed. For instance, the Andes

and Himalayan mountain ranges and the Atlantic
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forest region are prominent hotspots of extinction

risks. The mountain system hotspots, in particular,

will be exacerbated under future climate change because

montane bird species are projected to suffer from range

contractions owing to limited dispersal and adaptive

abilities, and hence higher extinction risks as a result

of global warming [45]. Most of the islands (e.g. Mada-

gascar and Polynesia), South and East Asia (e.g. India

and China) are also extinction risk hotspots. This is

in line with recent calls to prioritize conservation efforts

on islands, particularly oceanic ones, owing to their

high conservation risks, smaller land areas and high

levels of plant and terrestrial vertebrate endemism

richness [46].

The quantification of the detailed structure underlying

extinction risk across all birds allows us to not only assess

the geography of the response variable, but also that of

individual predictors and thus different putative causes

of cross-species and cross-space variation in extinction

risk. Our map of geographical range size confirms existing

gradients (electronic supplementary material, figure S5a;

[47]), while areas of relatively high encroachment corre-

spond well with intense anthropogenic footprints across

the globe and, for example, are located in eastern North

and Central America (including the Caribbean islands),

and South and East Asia (electronic supplementary

material, figure S5b). The life-history, ecological niche,

environmental niche and niche-breadth mean latent

scores are particularly low (blue shades) across the tropi-

cal and subtropical regions, ranging from Central and

South America, West and Central Africa to southeast

Asia (electronic supplementary material, figure S5c– f ).

These areas probably support many tropical forest species

with small body mass and altricial development mode

that feed on invertebrates and fruit or nectar, do not

forage exclusively on the ground and around water, have

relative narrow habitat breadth and occupy areas with

high AET and low seasonality (electronic supplementary

material, figure S1).
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4. CONCLUSIONS
We set out to evaluate core causes of extinction risk in

birds at the global scale in a conceptual framework that

integrates life-history/ecological attributes as well as geo-

graphical environmental and anthropogenic drivers. Our

findings provide support for select intrinsic determinants

of extinction risk, even when we control for geographical

range size, human encroachment and covariation among

select latent variables. More importantly, we find that

above and beyond all other factors, birds subjected to

high past human encroachment (as captured by a

remote-sensing-based estimate of range-wide anthropo-

genic land-cover transformations) are particularly likely

to be threatened. This confirms, first, the usefulness of

remotely sensed measures for the threat assessment of

other less well-known taxa and second, the dire need to

overcome the Wallacean shortfall [48,49] that currently

limits such evaluations to the small portion of biodiversity

with known global distributions.

A dilemma of IUCN Red List categorization to date is

its reliance on past data to assess extinction risk, while

ultimately seeking to predict the probability of the

future survival of species [2]. This issue is exacerbated

by the fact that geographical patterns of land-cover

change in the past are very different from those projected

for the future [50]. While exciting opportunities for the
Proc. R. Soc. B (2011)
integration of metapopulation or population dynamics

with forecasts of environmental change exist, often the

demographic data required to parametrize them reliably

for large number of species may not be available [18].

Our study provides a quantitative foundation for the

potential head-on inclusion—together with the more

static ecological and life-history attributes—of spatially

explicit projections of encroachment in evaluations of

future extinction risk. Such an assessment could be con-

tinuously refined as both geographical distribution data

and land-cover projections are progressively being

updated and become increasingly accurate.

We show how an integrative model combining intrinsic

and extrinsic, mostly static and highly dynamic factors

allows successful prediction of geographical patterns of

extinction risk at the assemblage level. Our findings

confirm the value of species-based approaches in under-

standing the geography of global extinction risk in avian

assemblages. Our results highlight the need to appreciate

the intricacies and inter-relationships, at the species level,

among the factors that structure global extinction risk

across species and space. In the context of impeding

global change, measures of future extinction risk in an

integrative setting are urgently needed to advance the

field of predictive biodiversity science and maximize the

long-term effectiveness of conservation efforts.
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