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Abstract

Habitat loss, climate change, over-exploitation, disease and other factors have been hypothesised in the global decline of
amphibian biodiversity. However, the relative importance of and synergies among different drivers are still poorly
understood. We present the largest global analysis of roughly 45% of known amphibians (2,583 species) to quantify the
influences of life history, climate, human density and habitat loss on declines and extinction risk. Multi-model Bayesian
inference reveals that large amphibian species with small geographic range and pronounced seasonality in temperature
and precipitation are most likely to be Red-Listed by IUCN. Elevated habitat loss and human densities are also correlated
with high threat risk. Range size, habitat loss and more extreme seasonality in precipitation contributed to decline risk in the
2,454 species that declined between 1980 and 2004, compared to species that were stable (n = 1,545) or had increased
(n = 28). These empirical results show that amphibian species with restricted ranges should be urgently targeted for
conservation.
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Introduction

Amphibians epitomise the modern biodiversity crisis, having

exhibited major population declines, disease susceptibility, mor-

phological deformities, and well-publicized recent extinctions

[1,2]. The recent global amphibian assessment [2] showed that

32% of the world’s amphibian species are unequivocally

threatened with extinction, with another 22.5% too poorly studied

to warrant exclusion from or addition to this growing list. Over

160 amphibian species are thought to have become extinct in

recent decades, and at least 43% of all described species are

currently experiencing population declines [2]. Thus, amphibian

species represent an especially sensitive bellwether to habitat and

climate change [3–6]. Although various threats to amphibians

(e.g., global warming, habitat loss, disease vulnerability to chytrid

fungus, and pollution) have been identified [4–7], large-scale

analyses of extinction risk in amphibians have been few [8]. This

situation impedes tangible conservation and identification of

threatened amphibians because localised or small-sample studies

restrict inference over the entire Class.

In general, large body size and small range are the most common

threat risk correlates identified for almost all organisms examined to

date. With decreasing range, a species’ populations are thought to be

more susceptible to localised stochastic events [9], and larger body

sizes generally correlate with slower life history traits, thus impeding

recovery potential after population crashes [10]. These traits may

also be important in explaining population decline and extinction

risk in frogs [8,11,12]. However, previous studies have been limited

in scope, either due to a small number of species examined (the

largest sample thus far represents ,10% of all amphibian species–

[8]) or restricted geographic area [e.g., refs. 12, 13]. While we

acknowledge that local drivers can be important, testing for major

global drivers helps put local effects into a general context where they

can be more easily evaluated, measured, and probably controlled.

Using an extensive database describing ecological, life history and

environmental attributes of approximately 45–60% of all known

amphibian species (3,366 species; some species were excluded from

analysis because of incomplete data; see Results), we determined

which traits were most associated with threat and decline risks (see

Materials and Methods).

Our data represent nearly an order of magnitude more species

than any previous study and have representatives from all three

amphibian orders (Anura [frogs and toads], Caudata [salaman-

ders] and Gymnophiona [caecilians]), something no other study

has yet achieved (see Table S1). Our analyses are also based on the

multi-model inferential paradigm that differs from Neyman-

Pearson hypothesis testing in that the former achieves stronger

inference in cases of multivariate causality [14–16]. This approach

has been used successfully for exploring determinants of extinction

and threat risk in other taxa [e.g., 17, 18], and we apply it here to
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determine the relative strengths of evidence for different aspects of

amphibian life history, geography, and other variables to explain

threat risk. Additionally, because drivers of population decline are

often decoupled from stochastic factors that cause eventual

extinction [17], we determined whether declining amphibian

species (between 1980 and 2004) were affected by habitat loss,

climate, life-history and ecology.

We examined the following specific, but related questions: (1)

Does habitat loss (and human density as a surrogate measure of

habitat loss) affect amphibian endangerment and decline? (2) Do

temperature and precipitation (as proxies of climate change and

potential disease susceptibility) affect amphibian endangerment

and decline? (3) What aspects of ecology and life history (e.g.,

range size, body size and reproductive mode) are most important

in determining amphibian endangerment and decline? (4) Do

different processes affect endangerment and decline? For example,

is there evidence for interactive effects between drivers on the risk

of threat and population decline?

Results and Discussion

To avoid circularity, we excluded those species categorized on

the basis of geographic range (IUCN ‘‘B’’ criteria) and used the

remaining 2,494–3,052 amphibian species (depending on the

specific analysis–see below) for our analysis. Threat categories

were combined into ‘‘threatened’’ (Critically Endangered, Endangered,

Vulnerable, Near Threatened) and ‘‘non-threatened’’ (Least Concern)

categories. Despite a relatively large dataset (435 threatened versus

2,059 non-threatened species), geographic range alone still explained

nearly half of deviance in threat risk (percentage deviance

explained [%DE] = 45%), but there was little evidence for a

nonlinear (quadratic) effect of range on threat risk as reported by

Cooper et al. [8] (Table 1a). According to the dimension-

consistent Bayesian Information Criterion (BIC) weights (wBIC),

a method for inferring strength of evidence of a statistical model

appropriate for large samples with tapering effects [14], a

correlative model including only geographic range and body size had

majority support (wBIC = 0.975). The inclusion of all interactions

in the fully saturated models raised %DE by only ,2%. The body

size-only model accounted for only about 1% of the deviance in

threat risk. Spatial autocorrelation did modify model rankings and

goodness-of-fit slightly (Tables 1 and S6, S7 and S8); even though

the BIC evidence ratio indicated that the top-ranked model

without spatial autocorrelation was nearly 14 times better

supported than when it included spatial autocorrelation. In

general, threat risk decreases linearly with an increase in the log

of geographic range or body size. Other ecological and life history

attributes received little relative support, with only weak evidence

for life history habit (terrestrial, aquatic, terrestrial-aquatic, or

arboreal lifestyles) and reproductive cycle terms. The highest-ranked

GLMM based on the reduced dataset, when re-parameterized as a

simple generalized linear model (GLM), revealed a %DE of

44.69%. This demonstrates only a small effect of phylogeny on

explained variance in threat risk (although model ranking

changes–Supplementary Tables S6, S7 and S8).

We also identified environmental determinants (local context) of

threat risk, after controlling for the conditional life history traits of

geographic range and body size (Table 1b). There was some support for

weak effects of mean annual temperature, annual temperature seasonality

and annual precipitation seasonality (the two top-ranked models

accounted for 0.354 and 0.267 of the wBIC, respectively;

Table 1b). Threat risk increased with more pronounced

seasonality in temperature, precipitation, habitat loss and human density,

but declined with increasing ambient temperature (Fig. 1). Although

not completely intuitive, these results agree broadly with known

environmental and historical constraints on amphibian distribu-

tions [19] and suggest that multiple variables may threaten

amphibians. Thus there is an urgency with which amphibian

restoration efforts must target regions of high amphibian threat

risk, given that anthropogenic climate change is known to

exacerbate amphibian extinction trends [1].

Species of amphibians with small geographic ranges tend to

have more habitat specificity [11], which makes them vulnerable

to habitat alterations. On the other hand, widespread species

tended to be more general in their habitat preferences with the

widest diversity of breeding sites. Further, amphibians with small

ranges may have low abundance and reproductive success, making

them particularly vulnerable [8,20] (Fig. 2).

Drivers of population decline are often decoupled from

stochastic factors that can cause eventual extinction [17,21]. To

distinguish these different processes, we also collected data from

4,027 species with known population trend data from 1980 and

2004 to determine if the same set of ecological, life history and

environmental drivers that explained threat, also explained the

probability of decline (2,454 declining, 1,545 stable and 28

increasing species). Generally agreeing with the IUCN threat

status results, small geographic range and large body size were still

correlated with a higher likelihood of population decline (Table 2;

Fig. 1), but there was also evidence for a nonlinear (quadratic)

effect of range (Table 2). Further, despite using Bayesian inference

Table 1. Correlates of amphibian threat risk.

Model k LL DBIC wBIC %DE D%DE

(a) Ecology/life-history

BS+RG 8 2580.785 0.000 0.975 46.11

BS+RG+HB+RC 12 2575.106 8.972 0.011 46.63

RG+RG2 8 2585.825 10.188 0.006 46.64

BS+RG+HB+FT 12 2575.858 10.519 0.005 46.56

BS+RG+HB+PC 12 2577.347 13.627 0.001 46.43

(b) Environmental context

BS+RG+TM+PV 10 2572.935 0.000 0.354 48.53 2.42

BS+RG+TM+PM+PV 11 2570.693 0.564 0.267 48.73 2.62

BS+RG+TM+TV+PV 11 2570.907 0.980 0.217 48.71 2.60

BS+RG+TM+PV+HL 11 2572.290 3.787 0.053 48.59 2.48

BS+RG+TM+PM+PV+HL 12 2569.931 4.102 0.046 48.80 2.69

The five most parsimonious generalized linear mixed-effects models
investigating (a) life history correlates of threat risk (n = 2,494) and (b)
environmental context, after accounting for effects of range and body size
(n = 2,584). Models include nested (hierarchical) taxonomic (Order/Family)
random intercepts and geographic distance random slopes to account for
spatial autocorrelation. Models were ranked according to the Bayesian
Information Criterion (BIC). For ecology/life history models, the five most highly
BIC-ranked models accounted for .99 % of the posterior model weight (wBIC)
of the total of 40 models considered. For environmental context, model weights
were more evenly distributed among the 5 most highly ranked of the 75
models considered. Terms shown are RG = range (km2), BS = body size,
HB = habit, RC = reproductive cycle, PC = presence/absence of parental care, and
FT = fertilization type, TM = mean temperature, PV = precipitation range,
PM = mean precipitation, TV = temperature range, HL = % habitat lost,
HD = human density (people/km2) Also shown are number of parameters (k),
maximum log-likelihood (LL), difference in BIC for each model from the most
parsimonious model (DBIC) model weight (wBIC), percent deviance explained
(%DE) in the response variable (threat probability) by the model under
consideration, and the difference between the %DE for the current
environmental context model and the base ,BS+RG model (D%DE).
doi:10.1371/journal.pone.0001636.t001

Amphibian Extinction & Decline
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to identify the most important drivers of correlations, there were

important additional tapering effects not identified in the threat-

risk phase: habit, spawning site, reproductive cycle, reproductive mode,

parental care and fertilization; these accounted for an additional

,2.3% of deviance in decline risk above the body size and

nonlinear range model (Table 2a). Aquatic and arboreal species,

species with specific spawning requirements, aseasonal breeders,

ovoviviparous species and species with external fertilization all

appear to have higher risks of declining (Fig. 3).

These life history traits (body size, range, spawning site, reproductive

cycle, reproductive mode, parental care and fertilization type) attributes

were set as control variables in the environmental analysis. We

found evidence for additional effects of mean annual temperature,

annual temperature seasonality, annual precipitation seasonality, human

density and proportional habitat loss on decline risk (Table 2b),

although effects were weak (change in %DE between life history

control model and best-supported models = 2.9 to 3.3%; Table 2b).

Risk of decline decreased under higher ambient temperature and

increased with greater precipitation seasonality and habitat loss.

Further, and in contrast to the threat status results, decline risk

decreased mainly with lower temperatures, higher precipitation

seasonality and increased habitat loss (Table 2b). These differences

underscore important distinctions between threat status (which is

potentially conflated with natural rarity) and decline (Fig. 1).

Studies on birds and mammals have determined that range-

restricted and large-bodied species are generally more vulnerable

to extinction than their widespread and smaller counterparts

[21,22]. Such species are potentially good indicators of the onset of

environmental change, being relatively more sensitive to abnormal

climate patterns and habitat loss [23,24]. Our results both

corroborate previous restricted-scale or low-sample studies [e.g.,

8, 12, 13, 25], but also deliver new insights to the relative

importance and potential synergies of different drivers on both

amphibian endangerment and decline risk (e.g., that body size,

reproductive characteristics, and most importantly, climate

seasonality modify amphibian threat risk). Not only do most studies

show that geographic area is one of the most important drivers of

extinction risk, our data reveal that it is the most important by far

relative to all other potential drivers, even though there are a host of

other potential drivers modifying the probability weakly. Further, we

found no evidence for interactions among drivers; however, it would

be interesting to see if this trend holds with even large samples sizes.

Another important result of our study is that different datasets,

statistical approaches and regional assessments generally agree on

important drivers of extinction. Our challenge now is to implement

these findings into sound conservation approaches, specifically by

targeting range-restricted species.

Conclusions
We found statistical support for models incorporating the effects

of climate seasonality, although its influence on extinction risk

relative to range and body size is weak. Our results also highlight

the contribution of habitat degradation and human density to

amphibian extinction and decline risk. Although threatened and

declining amphibian species are constrained by many of the same

conditions (e.g., precipitation seasonality), the two indices describe

subtly different components of the pathway to extinction [17,21].

The reasons for population declines that can push a species

towards a higher risk of extinction can be a complex function of

many factors acting simultaneously [26]. As such, analyses aiming

to determine the relative importance potential drivers require large

samples and broad geographic coverage to make inference across

entire taxa. Our findings that amphibians are more susceptible to

decline when they have small geographic ranges and large body

sizes are not new; however, our discovery that extrinsic forces

increase the susceptibility of high-risk species validates the

hypothesis that global warming and the increased climatic

variability this entails, spell a particularly dire future for

amphibians. Evidence is mounting that both direct (e.g., habitat

destruction) and indirect (e.g., climate change) factors now severely

threaten amphibian biodiversity [1,5,6]. Our study confirms that

areas containing high number of restricted range amphibians

should have conservation priority. Although efforts such as captive

breeding [27] might help to buffer some declining populations in

the short term, such interventions cannot substitute for habitat

protection and restoration. The synergies between ecological/life

history traits and environmental conditions demonstrate how

Figure 1. Major variables affecting amphibian species threat
(yellow arrows) and decline (blue arrows) risk. Arrow width
corresponds to amount of threat or decline risk (approximately related
to the per cent deviance explained) described by each attribute (Tables 1
and S5–S6). The major determinant of both threat (IUCN Red-Listed) and
decline risk is range size (stronger effect for threat risk), followed by body
size (allometry). Certain life history characteristics (life habit, reproductive
cycle and mode) also weakly affect decline risk. Environmental conditions
such as mean ambient temperature, temperature seasonality, precipita-
tion seasonality, habitat loss and human density also explain a small
amount of variation in both threat and decline risk.
doi:10.1371/journal.pone.0001636.g001

Figure 2. Median geographic range sizes for various amphibian
threat and decline categories. Median (695% confidence limits)
log-transformed geographic range sizes for Red-Listed (threatened)
versus non-threatened species, and for declining (assessed between
1980 and 2004) and non-declining (stable or increasing) species.
doi:10.1371/journal.pone.0001636.g002

Amphibian Extinction & Decline
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multi-foci management is a necessary precursor to any successful

conservation action–there is no magic bullet to prevent extinc-

tions. Conservation efforts need to be coupled to substantial

increases in international research on the long-term monitoring of

amphibian populations [28,29] and collection of life history and

ecological data to effectively mitigate the current meltdown of

amphibian biodiversity.

Materials and Methods

The choice of ecological, life history and environmental

variables used in the our analysis was a function of (1) data

availability for the largest number of species to maximize sample

sizes; (2) identification of the most logical variables shown or

believed to be responsible for altering the probability of threat and

decline risk in a large number of taxonomically specific species

[e.g., 8,18]; and (3) parsimony considerations to limit the number

of models and variable combinations that facilitate interpretation.

We were careful to limit our hypotheses to specific combinations of

variables under thematic categories so that weak and possible

confounded variable combinations could be avoided. We also were

particularly mindful of biases that have already been revealed in

previous studies linking climate change, disease outbreak, and

other factors that affect risk for amphibians.

Data were compiled from various sources including the extensive

Global Amphibian Assessment database (GAA) [29] and numerous

field guides and expert opinions (see Supporting Information). We

adapted the earlier (2005) version of the GAA amphibian species list,

but did not include most recently described species (from 2005

onward). Nomenclature and taxonomy follow the current version of

the GAA. We did not include introduced taxa outside of their natural

geographic ranges. Geographic distribution maps for 5,813 of the

5,918 described amphibian species used for our analyses were

assembled and supplied by the GAA.

We compiled ecological, life history and environmental data

from a total of 5,717 amphibian species from 3 orders, 48 families

and 460 genera (Supplementary Table S1). Of these, 1,801 (46%)

were classed as threatened according to IUCN criteria. For the

decline-risk analysis (see main text and below), we obtained data

on population trends between 1980 and 2004 for 4,027 of the

5,717 species (70%). Of these, 2,454 species (61%) were considered

to have declined, 1,545 species (38%) had remained stable, and 28

species (1%) had increased. Due to missing data in some categories

(e.g., body size), the final number of species analysed varied

according to the model set under consideration. Supplementary

Table S1 provides the ranges of species sample sizes used in the

analyses (see Results tables for exact numbers).

Information on country distribution, total range area (km2),

population trend, and habitat distribution of species were obtained

exclusively from the GAA, and conservation status was based on

applicable versions of the IUCN Red List (www.iucnredlist.org).

Reproduction, habits, body size (snout-vent length for anurans,

total length for caudates and caecilians), and altitudinal distribu-

tion were obtained from field guides, herpetology textbooks,

monographs, journal articles, and online amphibian databases and

websites (see Supplementary Notes S1); we also included

unpublished field data for a few species (see Acknowledgements).

In the absence of data (or sources that we could not access) for a

particular species, we sometimes assumed similar values based on

within-genus trends and information available from closely allied

taxa (if experts agreed). We also located original information

sources (i.e., original description of types or taxonomic mono-

graphs) when popular references provided inconsistent data. Body

sizes were based on median values of five categories established for

each amphibian order (see Supplementary Table S2). After initial

data compilation, we found only three errors (all missing data) in

over 1,500 random data field confirmations (error rate = 0.002%),

and after corrections, we found no other errors in another 100

Table 2. Correlates of amphibian decline risk.

Model k LL DBIC wBIC %DE D%DE

(a) Ecology/life-history

BS+RG+RG2+HB+SS+RC+RS+PC+FT 21 21598.536 0.000 0.951 17.01

RG+RG2 8 21642.173 6.314 0.040 14.75

BS+RG+RG2 9 21640.552 9.346 0.009 14.83

BS+RG+HB+RC+RS 14 21644.806 49.419 ,0.001 14.61

BS+RG+HB+RC 12 21654.167 55.633 ,0.001 14.13

(b) Environmental context

lhb…+TM+PV+HL 24 21525.251 0.000 0.934 20.26 3.25

lhb…+TM+TV+PV+HL 25 21525.143 5.954 0.048 20.26 3.25

lhb…+TM+PM+PV+HL 25 21526.291 8.083 0.016 20.20 3.19

lhb…+PM+PV+HL 24 21531.849 13.502 0.001 19.91 2.90

lhb…+TV+PV+HL+HD 25 21530.015 15.776 ,0.001 20.01 3.00

The five most parsimonious generalized linear mixed-effects models investigating (a) life history correlates of decline risk (n = 3,045) and (b) environmental context, after
accounting for effects of life history correlates (top-ranked ecology/life-history model denoted as ‘lhb’–life-history base) (n = 3,121). Models include nested (hierarchical)
taxonomic (Order/Family) random intercepts and geographic distance random slopes to account for spatial autocorrelation. Models were ranked according to the
Bayesian Information Criterion (BIC). For ecology/life history models, the five most highly BIC-ranked models accounted for .99 % of the posterior model weight (wBIC)
of the total of 40 models considered. For environmental context, model weights were more evenly distributed among the 5 most highly ranked of the 75 models
considered. Terms shown are RG = range (km2), BS = body size, HB = habit, RC = reproductive cycle, RS = reproductive strategy, PC = presence/absence of parental care,
SS = spawning site and FT = fertilization type, TM = mean temperature, PR = precipitation range, PM = mean precipitation, TR = temperature range, HL = % habitat lost,
HD = human density (people/km2) Also shown are number of parameters (k), maximum log-likelihood (LL), difference in BIC for each model from the most parsimonious
model (DBIC), model weight (wBIC), percent deviance explained (%DE) in the response variable (decline probability) by the model under consideration, and the
difference between the %DE for the current environmental context model and the life history base (lhb) model (D%DE).
doi:10.1371/journal.pone.0001636.t002

Amphibian Extinction & Decline
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random field confirmations in a dataset that included more than

1.25 million values.

We used geographic distribution maps for 5,813 (98.2 %) of

5,918 described amphibian species, assembled and supplied by the

GAA [29] for our analyses. Each species’ extent-of-occurrence

map is a single minimum convex polygon that connects known

locations, but includes multiple polygons when there is clear range

discontinuity. We extracted human impact and bioclimatic

variables of individual species by overlaying each species’

distribution map with available data using the Spatial Analyst

extension of ArcGIS v9.0. Mean human population density

(people?km22) within the geographic range of each species was

estimated using the Gridded Population of the World for 1995 at

2.5 arc-minute resolution [30]. This database is derived from

human population census data for ca. 127,000 sub-national

geographic units based on national population estimates that have

been adjusted to match the UN national estimated population for

each country.

Figure 3. Predicted probabilities of population decline for the life history terms habit, spawning site, reproductive cycle, reproductive
mode, presence/absence of parental care and fertilization type (derived from the nine-term model BS+RG+RG2+HB+SS+RC+RM+PC+FT
based on the BIC-selected top-ranked model; see Table 2). The observed extinction probability 95% confidence interval (dotted horizontal
lines) was determined by a 10,000 iteration bootstrap of the probabilities predicted by the above model over 3,052 species. Changes to extinction
probability relative to each term level were calculated by adjusting the original dataset so that all species were given the same value for that level
(each level value in turn), keeping all other terms in the model as in the original dataset. Error bars represent the 10,000 iteration bootstrapped upper
95% confidence limits. aq = aquatic, arb = arboreal/phytotelms, ter = terrestrial, aq-ter = aquatic & terrestrial, ovi = oviparious, ovoviv = ovoviviparous,
dir dev = direct development. See text and Supplementary Table S3 for a description of variables.
doi:10.1371/journal.pone.0001636.g003

Amphibian Extinction & Decline
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Extent of habitat loss due to anthropogenic impact was

evaluated by using a modified version 3 of the Global Land

Cover 2000 dataset (GLC 2000) [31] to calculate percent area

converted within each species’ geographic range. The GLC

2000 is a compilation of continental land cover maps that

categorizes land cover at 1-km2 resolution for all land masses

except Antarctica. Percent area converted was calculated as

percentage of terrestrial area classified as cultivated or managed

areas, cropland mosaics, and artificial surfaces and associated

areas, in the modified GLC. Following Hoekstra et al. [32], we

assumed that past area conversion within each species range

was zero.

Mean bioclimatic variables within each species distribution

range were estimated using ‘WorldClim’, a global climate database

with high spatial resolution (Version 1.4; www.worldclim.org [33]).

Climate layers were produced through interpolation of average

monthly climate data (i.e., monthly precipitation, and monthly

mean, minimum and maximum temperature) from weather

stations on a 30 arc-second resolution grid (commonly referred

to as ‘‘1-km2’’ resolution; ,0.86 km2 at the equator). The

‘WorldClim’ database was assembled using major climate

databases, including Global Historical Climatology Network

(GHCN), Food and Agriculture Organization of the United

Nations (FAO), World Meteorological Organization (WMO),

International Centre for Tropical Agriculture (CIAT), R-Hydro-

net, among others, and were limited to records from 1950–2000.

Climate surfaces were developed using a thin plate smoothing

spline algorithm implemented in ANUSPLIN software–a program

for interpolating noisy multivariate data with latitude, longitude,

and elevation as independent variables.

Compared to other widely used global climate databases (e.g.,

see New et al. [34]), the ‘WorldClim’ database has a number of

advantages for analysing taxa with small and restricted geographic

ranges such as amphibians: (1) bioclimatic data have high spatial

resolution; (2) a large number of weather station records are used;

(3) it uses improved elevation data; and (4) a greater degree of

knowledge on spatial patterns of uncertainty in data are

incorporated. The six aggregated bioclimatic variables we selected

for analysis are biologically relevant, representing annual trends

and limiting environmental factors derived from monthly

temperature (mean, minimum and maximum) and rainfall values.

These variables include mean annual mean temperature (in u C),

maximum temperature of warmest month, minimum temperature

of coldest month, annual precipitation (in mm), precipitation of

wettest month, and precipitation of driest month, estimated within

each species geographic range. As observed by Cooper et al. [8],

we believe that data quality issues between range map (area of

occupancy) vs. GAA geographical range map are minimal.

Analysis

To avoid potentially spurious or statistically intractable

problems common in large-scale correlative studies, our model-

building strategy used existing knowledge from other studies [2,4–

6] and logic to construct a plausible set of a priori hypotheses

regarding the relationship between threat risk its putative drivers.

This design avoided an all-subsets approach by testing specific

hypothesis (rather than all possible term combinations) which

essentially amounts to model data-mining. We split the modelling

approach into two phases to avoid over-parameterizing models: (1)

Phase 1 examined the relationship between threat risk and life

history correlates body size, geographic range, life history habit, spawn

site, reproductive cycle, reproductive mode, presence/absence of parental

care and fertilization type. The terms body size and geographic range were

log-transformed, and all other variables were coded as categorical

factors. Various combinations of life history terms were built under

life history themes (n = 33 models; Supplementary Table S3), and

we also considered 7 interaction terms (Table S3) combined with

the single-term saturated model (Table S3). We also examined the

evidence for nonlinear (quadratic) relationships between the threat

risk and geographic range based on recent findings [8]. (2) Phase 2

incorporated terms from the most parsimonious models (model

ranking described below) supported in Phase 1, with addition of

environmental terms mean ambient temperature, annual temperature

seasonality, mean annual precipitation, annual precipitation seasonality,

human density and proportional habitat loss. Terms were combined

under themes as in Phase 1, with 4 interactions considered (n = 74

models; Supplementary Table S4). Annual temperature seasonality and

annual precipitation seasonality were calculated as the square root of

the difference between mean annual maximum and minimum

values. Proportional habitat loss was arcsine-square root transformed

to normalize its distribution. Nonlinear (quadratic) relationships

between the response variable and mean ambient temperature and mean

annual precipitation [8] were considered. Given that the processes

driving population decline are often decoupled from those

ultimately determining extinction [17,21], we hypothesized that

a different set of correlates might apply to the probability of

population decline. The entire two-phase process was therefore

repeated for the response decline risk–whether or not there was

evidence for population decline for each species

Each hypothetical relationship was fitted as a specific general-

ized linear mixed-effect model (GLMM) relating the response

variables (threat risk, decline risk) using the lmer function of the

lme4 library in the R Package [35]. Threat risk (i.e., IUCN Red

Listed or not) was coded as a binomial response variable and each

trait as a linear predictor (fixed effects), assigning each model a

binomial error distribution and a logit link function. Decline risk

was coded similarly, with species showing no evidence of decline

coded as ‘no decline’.

Species are phylogenetic units with shared evolutionary histories

and are therefore not statistically independent units [36]. Indeed,

previous work has demonstrated that the risk of decline and/or

extinction may vary among families in amphibians [7]. It was

therefore necessary to decompose variance across species by

coding the random-effects error structure of GLMM as a

hierarchical taxonomic (Order/Family) effect (adjusting the

random effect’s intercept term) [37,38]. We had insufficient

replication within some families to include genus in the nested

random effect (GLMMs failed to converge), but we expect that

even with sufficient replication of genera there would be little effect

on model goodness-of-fit given the small contribution of

phylogenetic control revealed by contrasting GLMMs with GLMs

(function glm in the R Package) (see Results). Therefore, we are

confident that our level of taxonomic control is sufficient to

account for the majority of phylogenetic relatedness.

GLMMs are more appropriate than the independent-contrasts

approach [36] in situations where a complete phylogeny of the

study taxon is unavailable, when categorical variables are included

in the analysis, and when model selection, rather than hypothesis

testing, is the statistical paradigm used. The amount of variance in

the threat probability response variable captured by each

combination of terms considered (see below) was assessed as the

percent deviance explained (%DE), which is a measure of a

model’s goodness-of-fit to the data [39].

In addition to accounting for phylogenetic relatedness in our

mixed-effects models, we controlled statistically for potential

spatial autocorrelation among the species examined (see Supple-

mentary Tables S9–10). When one species’ fate is correlated with
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that of its neighbours beyond that accounted for by environmental

variables (such as the ones cited above), then spurious relation-

ships may arise [e.g., 8]. Previous attempts to control for

phylogenetic relatedness and spatial autocorrelation have been

problematic given a lack of targeted statistical development;

however, the mixed-effects linear modelling approach offers some

advantages here. We first calculated the great-circle distance

matrix of the pair-wise geographic distances (in miles to account

for a spheroid) between the species’ range centroids using the

rdist.earth function of the fields library in the R Package. We then

calculated the mean geographic distance for each species based on

this matrix and incorporated this covariate as a random-effects

slope within the random term of the models (e.g., ‘‘distance|Or-

der/Family’’ in the format required for lmer objects in the R

language [38])

We used an index of Kullback-Leibler (K-L) information loss to

assign relative strengths of evidence to the different competing

models in each model set–Akaike’s information criterion corrected

for small sample sizes (AICc), as well as the dimension-consistent

Bayesian Information Criterion (BIC) [39]. These indices of model

parsimony identify relative evidence of model(s) from a set of

candidate models. Relative likelihoods of candidate models were

calculated using AICc and BIC weights [39], with weight (wAICc

and wBIC) of any particular model varying from 0 (no support) to

1 (complete support) relative to the entire model set. However, the

K-L prior used to justify AICc weighting can favour more complex

models when sample sizes are large [37,39] (as was the case for our

dataset), so we considered BIC weighting to determine the

contribution of the most important correlates of extinction risk

(essentially, posterior model probabilities given an uninformative

prior) [37]), and AICc weighting to identity tapering effects

[37,39]. Sample size for each model was reduced in most cases due

to some missing data in some of the hypothesized correlates

(updated sample sizes given in Results).
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