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Summary

1.

 

Conservation scientists and resource managers increasingly employ empirical dis-
tribution models to aid decision-making. However, such models are not equally reliable
for all species, and range size can affect their performance. We examined to what extent
this effect reflects statistical artefacts arising from the influence of range size on the sample
size and sampling prevalence (proportion of samples representing species presence) of
data used to train and test models.

 

2.

 

Our analyses used both simulated data and empirical distribution models for 32 bird
species endemic to South Africa, Lesotho and Swaziland. Models were built with either
logistic regression or non-linear discriminant analysis, and assessed with four measures
of model accuracy: sensitivity, specificity, Cohen’s kappa and the area under the curve
(AUC) of receiver-operating characteristic (ROC) plots. Environmental indices derived
from Fourier-processed satellite imagery served as predictors.

 

3.

 

We first followed conventional modelling practice to illustrate how range size might
influence model performance, when sampling prevalence reflects species’ natural pre-
valences. We then demonstrated that this influence is primarily artefactual. Statistical artefacts
can arise during model assessment, because Cohen’s kappa responds systematically to
changes in prevalence. AUC, in contrast, is largely unaffected, and thus a more reliable
measure of model performance. Statistical artefacts also arise during model fitting.
Both logistic regression and discriminant analysis are sensitive to the sample size and
sampling prevalence of training data. Both perform best when sample size is large and
prevalence intermediate.

 

4.

 

Synthesis and applications.

 

 Species’ ecological characteristics may influence the
performance of  distribution models. Statistical artefacts, however, can confound
results in comparative studies seeking to identify these characteristics. To mitigate
artefactual effects, we recommend careful reporting of  sampling prevalence, AUC as
the measure of  accuracy, and fixed, intermediate levels of  sampling prevalence in
comparative studies.
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Introduction

 

Confronted by current threats to biodiversity and
the difficulty of  obtaining detailed, repeated species

inventories for much of the world, biologists rely in-
creasingly on distribution models to inform conservation
strategies. Distribution models predict species richness
(Jetz & Rahbeck 2002), centres of endemism (Johnson,
Hay & Rogers 1998), the occurrence of  particular
species assemblages (Neave, Norton & Nix 1996) or
individual species (Gibson 

 

et al

 

. 2004), and the breed-
ing habitat (Osborne, Alonso & Bryant 2001), breeding
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success (Paradis 

 

et al

 

. 2000), abundance (Jarvis &
Robertson 1999) and genetic variability (Scribner 

 

et al

 

.
2001) of species.

Such models do more than fill gaps in distribution
maps. By delineating favourable habitats, distribution
models can help target field surveys (Engler, Guisan &
Rechsteiner 2004), aid in the design of reserves (Li 

 

et al

 

.
1999), inform wildlife management outside protected
areas (Milsom 

 

et al

 

. 2000) and guide mediatory actions
in human–wildlife conflicts (Sitati 

 

et al

 

. 2003). Distri-
bution models can be used to monitor declining species
(Osborne, Alonso & Bryant 2001), predict range expan-
sions of recovering species (Corsi, Dupre & Boitani
1999), estimate the likelihood of  species’ long-term
persistence in areas considered for protection (Cabeza

 

et al

 

. 2004) and identify locations suitable for reintro-
ductions (Joachim 

 

et al

 

. 1998). They allow biologists to
identify sites vulnerable to local extinction (Gates &
Donald 2000) or species invasion (Kriticos 

 

et al

 

. 2003),
and to explore the potential consequences of climate
change (Peterson 

 

et al

 

. 2002).
Distribution models will always perform better

for some taxa than for others (Venier 

 

et al

 

. 1999). To
maximize their utility, we need to understand whether the
variation in performance reveals inherent ecological
differences in a species’ predictability or whether it
reflects statistical artefacts.

Range size is one ecological characteristic, likely to
differ from species to species, that might influence the
success of distribution models (Venier 

 

et al

 

. 1999; Manel,
Williams & Ormerod 2001; Stockwell & Peterson 2002).
Such influence could have ecological roots. Species with
large ranges or disjunctive distributions, for example,
may exhibit subspecific variation in habitat associations
because of local adaptation (Stockwell & Peterson 2002).
To an automated model-fitting algorithm, such disjoint
habitat preferences could appear statistically incoher-
ent and therefore less predictable. Poor performance of
models for narrow-ranging species may instead have
methodological roots. Their habitat associations may
be perfectly coherent at fine spatial scales, but may not
manifest themselves at the spatial grain of analysis
(Fielding & Haworth 1995).

Variation in model performance with species’ range
sizes might equally, however, reflect biases inherent in
the modelling process. Range size can measure a species’
extent of occurrence or its area of occupancy. Where
range size measures area of occupancy, it will affect
either sampling prevalence (the proportion of data
points representing a species’ presence) or sample size
(the total number of data points, presence plus absence)
in the data sets used to train (parameterize) and/or
evaluate models. Both sampling prevalence (Fielding &
Haworth 1995; Manel, Dias & Ormerod 1999; Cumming
2000; Olden, Jackson & Peres-Neto 2002) and sample
size (Hendrickx 1999; Cumming 2000; Pearce & Ferrier
2000b; Stockwell & Peterson 2002) have been shown to
influence the performance of distribution models inde-
pendently of range size.

None the less, range size and prevalence are often
confounded because sampling prevalence is allowed to
vary with a species’ ‘natural’ prevalence, i.e. local range
size or the proportion of  study sites occupied by
the species (Manel, Williams & Ormerod 2001; Pearce,
Ferrier & Scotts 2001; Kadmon, Farber & Danin 2003).
Consequently, it is difficult to distinguish real ecolo-
gical phenomenon from statistical artefact. Furthermore,
it remains unclear where within the modelling pro-
cedure sample size and sampling prevalence exert
their artefactual effects, and whether these effects could
be avoided.

Biases could arise at two points during modelling:
(i) the process of  model fitting and (ii) the assessment
of model performance with accuracy metrics. Among
model-fitting algorithms, logistic regression, for example,
is thought to bias its results towards the more prevalent
category (presence or absence) (Fielding & Bell 1997).
Similarly, the matching coefficient, a widely used
accuracy metric, has been shown both mathematically
(Henderson 1993; Fielding & Bell 1997) and empir-
ically (Manel, Williams & Ormerod 2001; Olden, Jackson
& Peres-Neto 2002) to be affected by prevalence.

We sought to address two questions. (i) To what extent
does variation in model performance with species’
range sizes represent statistical artefacts or ecologically
meaningful patterns? (ii) Can we minimize the risk of
artefacts through an informed choice of model algorithm
and accuracy metric? To provide answers, we conducted
three analyses using both simulated data and empirical
distribution models of  southern African birds based
on Fourier-processed satellite data. We tested two
algorithms widely used in ecological modelling: logistic
regression and discriminant analysis.

Analysis 1 examined how range size will appear to
influence model performance if  potential artefacts are
ignored.

Analysis 2 tested whether statistical artefacts
relating to range size could arise at the model assess-
ment stage. We scrutinized two increasingly popular
measures of model accuracy, Cohen’s kappa and the
area under the curve (AUC) of  receiver-operating
characteristic (ROC) plots. Both have recently been
advocated in the ecological literature, primarily due to
their perceived independence or near-independence from
prevalence (Fielding & Bell 1997; Pearce & Ferrier
2000a; Manel, Williams & Ormerod 2001).

Analysis 3 investigated whether statistical artefacts
arise during the process of model fitting. Subsampling
is used to decouple sample size and sampling pre-
valence from range size in the data sets used to train and
test models, allowing us to examine the independent
effect of either factor on model performance.

We discuss our findings in the context of  both the
ecological and epidemiological literature. Particularly
concerned about the implications for comparative
studies, we conclude with a number of recommenda-
tions for both the producers and users of distribution
models.
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Materials and methods

 

  

 

We built distribution models for 32 bird species endemic
or near-endemic to South Africa, Lesotho and Swazi-
land (for a list of species see Table 1). Distribution data
for these species were taken from 

 

The Atlas of Southern
African Birds

 

 (Harrison 

 

et al

 

. 1997), with a few records
added from 

 

The Atlas of Birds of Sul do Save, Southern
Mozambique

 

 (Parker 1999). Both were provided in
electronic format by the Avian Demography Unit, Uni-
versity of Cape Town, Cape Town, South Africa. These
data have a spatial resolution of 0·25

 

°

 

 longitude–latitude
(quarter-degree squares, QDS), representing an area of
approximately 24 km (east–west) by 27 km (north–south)
at the latitude of  South Africa. The number of  QDS
occupied by each species served as a measure of range size.

 

 

 

Environmental information was derived from satellite
images collected twice daily over an 18-year period
(1982–99) by the National Oceanic and Atmospheric
Administration’s (NOAA, USA; http://www.noaa.gov)

advanced high resolution radiometer satellite series.
Environmental information obtained from these images
included a middle infra-red signal, indices of land sur-
face temperature, air temperature, the vapour pressure
deficit, and the normalized difference vegetation index.
A further index, cold cloud duration, was derived from
10 years (1989–98) of European Meteosat imagery
(Hay 2000). All imagery was composited into cloud-free,
monthly images and resampled from its original spatial
resolution of  8 km

 

2

 

 to the 0·25

 

°

 

 resolution of  bird
distribution data. For each environmental index, we used
temporal Fourier analysis, a data reduction technique
ideal for summarizing seasonal variables (Chatfield 1996;
Rogers, Hay & Packer 1996), to extract the overall mean,
minimum, maximum and variance, plus the amplitude
(strength) and phase (timing) of annual, biannual and
triannual cycles. Furthermore, altitude, derived from a
US Geological Survey’s global digital elevation model,
was included among the explanatory variables, yielding
a total of 61 predictors.

 

 

 

We tested logistic regression (LR) and non-linear dis-
criminant analysis (DA). In LR, training data serve to

Table 1. Names, range sizes and ‘natural’ prevalence of 32 endemic bird species whose distributions were modelled in analyses
1, 2 and 3 as indicated. Range size measures the number of quarter-degree squares (QDS) occupied by each species. In total, the
study area included 4275 QDS
 

 

Common name Scientific name Family Range size Prevalence Analysis

Mountain pipit Anthus hoeschi Passeridae 28 0·006 1
Knysna scrub-warbler Bradypterus sylvaticus Sylviidae 36 0·008 1
Yellow-breasted pipit Anthus chloris Passeridae 44 0·010 1
Ferruginous lark Certhilauda burra Alaudidae 45 0·011 1
Drakensberg siskin Serinus symonsi Fringillidae 49 0·011 1
Rufous rock-jumper Chaetops frenatus Picathartidae 51 0·012 1
Victorin’s scrub-warbler Bradypterus victorini Sylviidae 64 0·015 1
Protea seedeater Serinus leucopterus Fringillidae 74 0·017 1
Orange-breasted rock-jumper Chaetops aurantius Picathartidae 80 0·018 1
Blackcap mountain-babbler Lioptilus nigricapillus Sylviidae 84 0·020 1
Knysna woodpecker Campethera notata Picidae 108 0·025 1
Brown scrub-robin Cercotrichas signata Muscicapidae 113 0·026 1
Cape siskin Serinus totta Fringillidae 128 0·029 1
Orange-breasted sunbird Nectarinia violacea Nectariniidae 138 0·032 1
Forest buzzard Buteo trizonatus Accipitridae 149 0·034 1
Cape sugarbird Promerops cafer Nectariniidae 150 0·035 1
Melodious lark Mirafra cheniana Alaudidae 160 0·037 1
Chorister robin-chat Cossypha dichroa Muscicapidae 215 0·050 1
Forest canary Serinus scotops Fringillidae 215 0·050 1
Buff-streaked wheatear Oenanthe bifasciata Muscicapidae 227 0·053 1
Cape francolin Pternistis capensis Phasianidae 232 0·054 1
Yellow-tufted pipit Anthus crenatus Passeridae 266 0·062 1
Sentinel rock-thrush Monticola exploratory Muscicapidae 282 0·066 1, 2
Southern tchagra Tchagra tchagra Corvidae 303 0·071 1, 2
Blue bustard Eupodotis caerulescens Otididae 365 0·085 1, 2
Grey-winged francolin Scleroptila africanus Phasianidae 493 0·115 1, 2, 3
Ground woodpecker Geocolaptes olivaceus Picidae 494 0·115 1, 2, 3
Cape rock-thrush Monticola rupestris Muscicapidae 586 0·137 1, 2, 3
Southern double-collared sunbird Nectarinia chalybea Nectariniidae 680 0·159 1, 2, 3
Large-billed lark Galerida magnirostris Alaudidae 692 0·162 1, 2, 3
Cape weaver Ploceus capensis Passeridae 927 0·217 1, 2, 3
African pied starling Spreo bicolour Sturnidae 1167 0·273 1, 2, 3

http://www.noaa.gov
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establish what proportions of cases are positive (repre-
sent species’ presence) at each value of the explanatory
variables (Agresti 1996). A logit link transforms a linear
function of  predictors into response values between
0 and 1, representing the probability of occurrence of
the modelled event, here species’ presence (Legendre &
Legendre 1998). Analyses were performed in SPlus
(Insightful™ 2001); variables were selected in a for-
ward stepwise fashion based on their ability to reduce
the Akaike information criterion (AIC), a measure
of  model fit and parsimony (Sakamoto, Ishiguro &
Kitagawa 1986). Automated stepwise variable selection,
although much criticized, was applied here to reflect its
wide use in distribution modelling.

In DA, training data serve to determine the multi-
variate mean and variance–covariance structure of
predictor variables for each of the response variable’s
states, here presence and absence. The distribution of
predictor variables is assumed to be normal, but their
covariance need not be the same for all states in non-
linear DA (Rogers, Hay & Packer 1996). The posterior
probability of any data point belonging to one response
state or another is then calculated based on its position
in 

 

n

 

-dimensional space relative to each state’s multivariate
mean, where distance between sample point and mean
is measured as Mahalanobis distance (Green 1978;
Rogers, Hay & Packer 1996). For presence–absence data
DA thus predicts the probability of occurrence. Non-
linear DA was implemented using custom-written pro-
grammes in QuickBasic (Microsoft®). Ten predictor
variables were selected in forward stepwise fashion
based on their ability to maximize training accuracy as
measured by kappa (see below). Ten variables was just
less than the number picked, on average, in LR models
using the AIC (mean = 11; 

 

n

 

 = 770).

 

   

 

We focused on two measures of accuracy: Cohen’s kappa
and AUC of  ROC plots. To facilitate comparison
with other studies we also reported on sensitivity and
specificity.

Sensitivity quantifies the proportion of observed pre-
sences correctly predicted as presence (the true positive
fraction). Poor sensitivity therefore indicates many
omission errors, i.e. erroneous predictions of absence.
Conversely, specificity measures the proportion of
observed absences correctly predicted as absence (the
true negative fraction). Low specificity signals high
commission error, i.e. erroneous predictions of presence
(Fielding & Bell 1997). Both measures are mathem-
atically independent of  prevalence, because they are
expressed as a proportion of all the sites with a given
observed state (i.e. presence or absence; Pearce & Ferrier
2000a). None the less, these measures can be mislead-
ing. Each simply reflects how well the model predicts
one category (presence or absence) without indicating
how many mistakes are made in the other. Chance alone
could lead to high sensitivity for particularly prevalent

species or high specificity for very rare species (Olden,
Jackson & Peres-Neto 2002).

In contrast, kappa and AUC are ‘omnibus measures’,
designed to reflect model performance in absence and
presence simultaneously (Cicchetti & Feinstein 1990).
Kappa records overall agreement between predictions
and observations, corrected for agreement expected to
occur by chance. The statistic ranges from 

 

−

 

1 to +1,
where +1 indicates perfect agreement while values of
zero or less suggest a performance no better than ran-
dom (Cohen 1960). Although kappa has been reported
to show some sensitivity towards prevalence, this effect
has been judged negligible among ecologists (Fielding
& Bell 1997; Manel, Williams & Ormerod 2001).

Kappa, sensitivity and specificity all derive from a
confusion matrix (Fig. 1). Their calculation therefore
requires that probabilistic predictions of occurrence be
divided into concrete predictions of absence or presence,
based on a single, potentially arbitrary classification
threshold, here 0·5.

The area under ROC curves instead is a threshold-
independent measure of model accuracy, juxtaposing
correct and incorrect predictions over a range of thresholds.
It ranges from 0 to 1, with values larger than 0·5 indi-
cating a performance better than random (Fielding &
Bell 1997). AUC was here calculated non-parametrically
using the Wilcoxon statistic (Hanley & McNeil 1982;
Pearce & Ferrier 2000a). ROC plots are thought to be
independent of  prevalence, because the true positive
and false positive fractions determining their curve are
each expressed as a proportion of all sites with a given
observed state (Zweig & Campbell 1993).

 

 

 

1

 

:    


 

Distribution modelling often involves a fixed geo-
graphical study area or number of field locations from
which data to train models are drawn. Consequently,
total sample size is constant across species. The relative
frequency of positive samples in training and test data
(sampling prevalence) is determined by each species’
natural prevalence, i.e. the proportion of study sites
occupied by the species (Manel 

 

et al

 

. 1999; Manel,
Williams & Ormerod 2001; Pearce 

 

et al

 

. 2001).
Our first analysis took the same approach to build-

ing distribution models for 32 bird species endemic to

Fig. 1. A confusion matrix, which tabulates model results as
shown.
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South Africa, Lesotho and Swaziland. All QDS on the
African mainland south of 19

 

°

 

S were considered study
sites. For each species, data were split into test and
training data sets in a geographically systematic fash-
ion: moving west to east and north to south, every third
absence and every third presence site was set aside
as independent test data (1425 sites in total). All re-
maining sites (2850) served as model training. Both data
sets covered the species’ entire geographical spread,
and in both the ratio of  positive (presence) to neg-
ative (absence) samples reflected natural prevalence.
Models built with LR and DA used training data and
satellite-derived environmental indices to predict species’
occurrences across the entire study region. These models
were evaluated with test data.

 

 

 

2

 

:      
 

 

Bias in model performance with respect to prevalence
could arise during model assessment if  the measure
of accuracy used is affected by the ratio of positive to
negative cases in the sample.

Whether prevalence exerts such direct effects on
kappa was assessed with simulated data, consisting of
confusion matrices with three controlled characteristics.

Prevalence, here the proportion of cases simulating
observed presence, was implemented at 21 levels: 0·01,
0·05–0·95 in increments of 0·05, and 0·99.

Total classification error, i.e. the percentage of cases
simulating prediction errors, took one of seven values:
1%, 2%, 5%, 10%, 15%, 25% or 50%

Error allocation, i.e. the relative frequency of false
positive and false negative errors, was either balanced,
with misclassification of presence and absence propor-
tional to prevalence, or biased. Bias towards error in
presence (more false negatives) or absence (more false
positives) was simulated at three levels: error in the
chosen category exceeded the error expected in a
balanced situation by 5%, 10% or 20% where this was
possible without changing either total error or prevalence.

For each feasible combination of prevalence, total
error and error allocation, a customized programme
(in QuickBasic) randomly constructed 100 different
confusion matrices. The total number of cases per con-
fusion matrix (

 

n

 

) was allowed to vary, as preliminary
investigations had indicated that 

 

n

 

 had no effect. To
ensure that all components of the confusion matrix
consisted of integers, however, 

 

n

 

 was set to be a multiple
of 100, between 100 and 20 000. Kappa was calculated
for all 93 100 confusion matrices created.

Given the threshold-independent nature of ROC
curves, simulated confusion matrices could not be used
to test the effects of prevalence on AUC. Instead, we
created simulated test data sets by subsampling response
surfaces produced in analysis 1 by both LR and DA. To
ensure a sufficient number of presence localities, we
chose predictions for the 10 most wide-ranging endemics.
Each simulated data set consisted of 100 sites picked

randomly (among 4275), but such that observed the
species prevalence matched one of 21 levels of pre-
valence (as above). For each level of prevalence, 100
simulated data sets were created, yielding 42 000 in total.
AUC was calculated for each.

To test the effects of sample size on both kappa and
AUC, the same response surfaces were again sub-
sampled. Simulated data sets contained 25, 50, 75 or 100
sites picked such that the observed species’ prevalence
was 50%. One-hundred data sets were built per sample
size, yielding 8000 in total.

 

 

 

3

 

:      
   

 

To examine whether sample size and prevalence exerted
influence during model fitting, we chose seven endemics
(Table 1) that occurred in enough QDS to allow a
sufficient range in sample sizes to be tested. Their dis-
tributions were repeatedly subsampled to yield training
data sets with changing total sample size or changing
sampling prevalence. In the first instance, 50, 100, 300
or 500 training locations were sampled with an invariant
sampling ratio of 1 presence to 1 absence. In the second
instance, total sample size remained constant at 300
but positive samples constituted 12·5%, 25%, 50% or
75% of all training locations. Each sampling regime
was repeated 10 times per species.

Sampling was done via a custom-written programme
(QuickBasic). Absences were selected at random. To
ensure that they reflected environments that individuals
of the species might encounter, however, absences were
constrained to fall within 6

 

°

 

 of  the nearest presence
record (an admittedly arbitrary threshold, which ide-
ally should reflect species-specific mobility). Presence
records were selected such that samples spanned the
species’ entire geographical range (i.e. depending on
the sampling prevalence, every 2nd, 3rd, etc., presence
locality was selected for training). Training data were
submitted to both LR and DA.

Among the presence localities not used in training,
125 were picked at random and included in a test data
set alongside three times as many absence samples
(equally not used in training data). This yielded independ-
ent test data sets with a constant sampling prevalence
(25%) and a constant sample size (500).

Each model was evaluated with both training data
(measuring intrinsic accuracy) and test data (measur-
ing extrinsic accuracy). Extrinsic accuracy is a stronger
indicator of model performance (Fielding & Bell 1997).
Intrinsic accuracy is reported here for three reasons.
First, it allows us to examine the null hypothesis that
sample size and sampling prevalence do not interfere
with model fitting. If  so, intrinsic accuracy should
reflect only its effect on model assessment (i.e. mimic
patterns established in analysis 2) while extrinsic accu-
racy should show no response as long as the size and
prevalence of test data remain constant. Secondly, the
divergence between intrinsic and extrinsic accuracy
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indicates a model’s propensity to overfitting (Stockwell
& Peterson 2002) and may provide insight into how
potential artefacts arise. Overfitting occurs when model
parameters reflect random effects in the training data
as well as true patterns (Olden, Jackson & Peres-Neto
2002). Finally, the distinction between training and test
data is artificial. Models should ultimately predict a
species’ entire distribution sufficiently well to guide
scientists and managers in decision-making.

Consequently, for each species, we computed mean
training and mean test accuracy per sampling regime
(over the 10 replicate samples). Wilcoxon signed rank
tests for matched pairs served to compare the accuracy
of the two algorithms. Monotonic relationships between
mean accuracy and sample size or sampling prevalence
were examined with Spearman rank correlations. To
test for non-linear effects, fourth-order polynomial
regression models were built. Stepwise variable selection
ensured that higher order terms were included only if
they reduced the AIC; 

 

t

 

-tests established whether co-
efficients of  higher order terms differed significantly
from zero.

 

Results

 

 

 

1

 

:    


 

Natural prevalence of the 32 species in analysis 1
ranged from 0·6% to 27% (Table 1) and clearly affected
the predictive power of  models. As range size (and
therefore sampling prevalence) increased, models tended
to become better at predicting presence (i.e. sensitivity
improved) but did so significantly only in LR (Fig. 2a).
In contrast, their ability to predict absence correctly
(specificity) deteriorated in both LR and DA (Fig. 2b).
Kappa responded positively to range size in both algo-
rithms (Fig. 2c) but no significant correlation was
detected for AUC in either (Fig. 2d).

 

 

 

2

 

:      
  

 

In confusion matrix simulations, kappa responded
to prevalence and error allocation in a systematic,

curvilinear fashion (Fig. 3). Maximum kappa values
occurred at 50% prevalence. Bias towards errors in
presence depressed kappa values at low prevalence
(< 50%) but augmented them at high prevalence (> 50%;
Fig. 3b). Bias towards errors in absence had the
opposite effect (Fig. 3c). This effect of  bias was more
pronounced when total error was large.

AUC, in contrast, remained invariable with sampling
prevalence (Fig. 4a). Its value, however, tended to be
unstable when sampling prevalence fell below 20% or
above 75% (Fig. 4b). Larger between-species discrep-
ancies in DA than LR corresponded to larger variation
in AUC values achieved by DA models in analysis 1
(compare Figs 2d and 4a).

Sample size affected neither mean kappa nor mean
AUC per species, but in both metrics standard error
increased as sample size shrank (for kappa: 

 

r

 

s

 

 = 

 

−

 

0·86
in both LR and DA predictions; for AUC: 

 

r

 

s

 

 = 

 

−

 

0·63 in
LR, 

 

r

 

s

 

 = 

 

−

 

0·64 in DA, with 

 

n

 

 = 40 and 

 

P

 

 < 0·01 in all
correlations).

Fig. 3. Direct effects of prevalence on kappa in analysis 2, as modulated by the level of total classification error (see legend) and
error allocation. Error allocation was (a) balanced (proportionate to prevalence), or biased (by 20%) towards either (b) more false
negatives (more error in the prediction of presence) or (c) more false negatives (more error in the prediction of absence). Each
point plotted represents the mean of 100 replicate simulations; standard error was too small for display.

Fig. 2. The relationship between range size (number of
occupied QDS) and four measures of extrinsic accuracy in
analysis 1. Spearman rank correlation coefficients (rs) and
significant regression lines are displayed for both logistic
regression (LR, solid symbols and solid line) and discriminant
analysis models (DA, open symbols and dotted line).
Significant correlations (P < 0·01, n = 32 species) are
indicated (**).
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3
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Both training sample size and sampling prevalence
significantly influenced model fit. Visual inspection of
predictive maps suggested that increases in training
sample size improved fit by reducing both false positive
and false negative errors (Fig. 5a). Changes in sampling
prevalence gradually shifted error from mostly omis-
sion (underprediction of the species’ ranges) at low
prevalence to mostly commission (overprediction) at
higher prevalence (Fig. 5b). The best compromise gen-
erally occurred at 50% sampling prevalence.

The influence of training sample size and sampling
prevalence was similar in both LR and DA, as indicated by
the strong correlations between mean accuracy measures
achieved by the two algorithms per species and sampling
regime (0·94 

 

≤

 

 

 

r

 

s

 

 ≥ 0·95, P < 0·01 and n = 98 for all
four measures). A pairwise comparison revealed that LR
generally performed better on training data, while DA
tended to predict test data more accurately (Table 2).
This suggests that LR was more prone to overfitting,
potentially reflecting the different variable selection
criteria used in LR and DA: the two algorithms tended
to agree only on the first one or two predictor variables
picked, not subsequent ones. Variable selection among

Fig. 4. Direct effects of prevalence on AUC as observed in analysis 2. The response of AUC was tested on predictive distribution
models for 10 species, built with either logistic regression (left) or discriminant analysis (right). Mean AUC (n = 100 replicate
samples) per species showed no systematic effects as sampling prevalence varied (a). Standard error, however, increased at both
very low and very high sampling prevalence (b).

Table 2. Comparative performance of logistic regression and discriminant analysis in analysis 3, as indicated by the mean difference
in each of four accuracy measures achieved in training data (intrinsic accuracy) and test data (extrinsic accuracy). Significant
positive differences (bold, P < 0·05) indicate better performance in LR, whereas significant negative differences (bold italics, P
< 0·05) show better performance in DA. Significance was assessed using Wilcoxon signed rank tests to compare performance in
each sampling regime separately, and all sampling regimes combined. Statistical sample sizes (n) are indicated for each comparison
 

 

Sampling regime 
Sample size 50 100 300 500 Invariant sample size of 300

All 
regimesPrevalence Invariant prevalence of 50% 12·5% 25% 50% 75%

Intrinsic accuracy n = 7 n = 7 n = 49
Sensitivity 0·00 −0·01 –0·02 –0·02 0·03 0·00 –0·02 0·00 0·00
Specificity 0·00 0·01 0·01 0·01 0·03 0·03 0·01 0·05 0·02
Kappa 0·00 0·01 −0·01 −0·01 0·11 0·05 −0·01 0·04 0·03
AUC 0·00 0·01 0·01 0·01 0·01 0·02 0·01 0·01 0·01
Extrinsic accuracy n = 7 n = 7 n = 49
Sensitivity 0·00 −0·03 –0·02 −0·01 –0·05 –0·05 –0·02 –0·02 –0·03
Specificity –0·03 –0·02 0·01 0·02 0·00 0·01 0·01 0·00 0·00
Kappa –0·04 −−−−0·05 0·00 0·03 −−−−0·03 –0·02 0·00 −0·01 –0·02
AUC 0·03 –0·04 0·00 0·01 −0·02 0·00 0·00 −0·01 0·00
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Fig. 5. An example of model predictions obtained in analysis 3. Shown are predictions of logistic regression models for the grey-
winged francolin. Predicted probability of occurrence ranges from 0 (red) to 1 (green). The species’ observed distribution is marked in
black. In (a), training sample prevalence was constant at 50% but sample size varied as indicated in each panel. Larger sample sizes
produced a better fit, with the tightest match between observed and predicted distributions at sample size 500 (blue star). In (b), training
sample size was constant at 300 but sampling prevalence varied as indicated. Optimum fit (blue star) occurred at 50% prevalence.
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replicate models (per species and sampling regime) of
the same algorithm, however, was equally incongruous.

Although LR appeared more susceptible, overfitting
occurred in both algorithms and depended on sample
size and sampling prevalence. Increases in sample size
notably diminished overfitting because they reduced
intrinsic accuracy while improving extrinsic accuracy
(Fig. 6a). The decline in intrinsic accuracy was cur-
vilinear for all measures but AUC in DA. Extrinsic
accuracy improved linearly, with strong positive cor-
relations evident for all measures except specificity in DA.

The effects of sampling prevalence on model per-
formance were more complex (Fig. 6b). Higher pre-
valence led to better sensitivity but poorer specificity in
both training and test data. Intrinsic kappa showed no
significant response to prevalence in LR, but correlated
positively in DA with curvilinear effects. Intrinsic AUC
was not affected in either algorithm. Extrinsic kappa
and extrinsic AUC both displayed a significantly convex
relationship with prevalence. According to AUC, then,
overfitting was minimized at intermediate prevalence.

The models with best overall predictive power for
each species are listed in Table 3. Optimal models had
intermediate prevalence (50%) and large sample sizes
(300–500).

Discussion

In its disregard of potential statistical artefacts, conven-
tional practice in distribution modelling can mislead:
based on analysis 1 alone we might have concluded,
mistakenly, that range size affected model accuracy.
According to kappa, overall predictive power was greater
for species with larger ranges. The lack of  response
in AUC might have alerted us to potential statistical
artefacts. Because kappa is threshold dependent while
AUC is not, we may, however, have concluded that models
for species with smaller ranges should utilize a different
decision threshold to separate probabilistic predictions
of occurrence into predictions of presence and absence.

Instead, the response in kappa with changing range
size probably reflected the direct effects sampling

Fig. 6. Variation in model accuracy as observed in analysis 3 in response to changes in (a) training sample size and (b) training
sample prevalence. Mean accuracy and standard errors (across seven species) are plotted for sensitivity, specificity, kappa and AUC
measured on training data (intrinsic accuracy; small symbols) and test data (extrinsic accuracy; large symbols) in both logistic regression
(LR: filled symbols and solid line) and discriminant analysis (DA: open symbols and dashed line). Regression lines illustrate
significant linear or polynomial trends. Spearman rank correlations (rs) are given to the right of each panel, with statistical
significance (P < 0·01) indicated (**). The larger the discrepancy between intrinsic and extrinsic accuracy, the more the model was overfit.
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prevalence exerts on this metric. In analysis 1, the
sampling prevalence of test data increased with species’
range sizes. Analysis 2 showed clearly that kappa
responds positively to such changes in sampling
prevalence, as long as the proportion of positive cases
remains below 0·5 (as was the case in analysis 1).

Kappa responded to the overall level of error, error
allocation and prevalence. That kappa reflects overall
error is obviously desirable. Its response to the alloca-
tion of error also seems justified. Disproportionately
high error in the category (presence or absence) of lower
prevalence is penalized, whereas disproportionately
good performance is rewarded. Kappa’s sensitivity
to prevalence overall, however, renders it inappro-
priate for comparisons of  model accuracy between
species or regions unless certain precautions are taken.
This has not yet been highlighted in the ecological
literature.

Kappa’s behaviour and implications thereof have,
however, been extensively scrutinized in clinical and
epidemiological contexts (Cicchetti & Feinstein 1990;
Lantz & Nebenzahl 1996; Hoehler 2000). The metric
suffers from two artefacts, termed bias effect (Byrt, Bishop
& Carlin 1993) and prevalence effect (Thompson &
Walter 1988). Kappa should therefore be used with
caution in comparative studies (Thompson & Walter
1988; Byrt, Bishop & Carlin 1993) and perhaps only
where experimental design can ensure 50% prevalence
(Lantz & Nebenzahl 1996; Hoehler 2000).

Alternatively, analysis 2 implies that AUC permits
reliable comparisons of accuracy where species’ pre-
valence varies between models. AUC remained constant
over a wide spectrum of sampling prevalence, making it
a robust measure of model performance.

ROC curves first appeared in the ecological literature
in the mid-1990s (Murtaugh 1996). They have, however,
been used in medical analysis since the 1950s (Zweig &
Campbell 1993), and AUC remains a popular measure
of diagnostic accuracy (Faraggi & Reiser 2002). In a
comprehensive review of ROC plots and associated
statistics, Zweig & Campbell (1993) highlighted the

technique’s independence of prevalence. In our ana-
lysis, AUC displayed elevated standard errors at very low
(< 20%) and very high (> 75%) sampling prevalence.
As a safeguard, therefore, an intermediate prevalence
may be advisable when measuring AUC.

Unlike AUC, model-fitting algorithms responded
strongly to both sample size and sampling prevalence.
The null hypothesis, that sample size and sampling
prevalence exert no effect on algorithmic performance,
was rejected for two reasons. First, intrinsic accuracy
did not mimic patterns established in analysis 2.
Secondly, extrinsic accuracy responded significantly
to variations in training sample size and sampling
prevalence when it was expected to remain unaffected.

The effect exerted by sample size on LR and DA in
analysis 3 has been noted by other authors. Cumming
(2000) reported that increasing the size of the study
area, and therefore sample size, led to higher AUC in
LR. Pearce & Ferrier (2000b) found that, among a
number of factors tested, sample size had the largest
effect on the predictive accuracy of LR. Stockwell &
Peterson (2002) noted that LR performed worse at
small sample sizes than two other algorithms (GARP
and surrogate models) and was more prone to over-
fitting. Hendrickx (1999) found that, in DA, smaller
sample sizes led to diminished predictive accuracy,
although the relationship was not proportionate: reduc-
ing sample size by 2/3 decreased predictive power by
only 10%. Williams & Titus (1988), none the less, re-
commended that DA models of ecological systems be
trained with at least three times as many samples as the
number of predictor variables to be included. Their
simulation suggested that sample sizes smaller than
this produced unstable canonical coefficients.

Although other authors have noted the potential
influence of prevalence on model accuracy, none has
tried to disentangle direct effects on measures of accu-
racy from sensitivities inherent in the model algorithm.
Furthermore, few have separated the effects of sampling
prevalence from potentially meaningful ecological
effects of range size.

Table 3. Optimal models for each species in analysis 3, built with either logistic regression (LR) or discriminant analysis (DA).
A model was judged optimal if, on average (more than n = 10 repeat trials), it achieved the highest extrinsic AUC value for that
species. Ties were solved by choosing models that also maximized extrinsic kappa. For each species, the optimal sampling regime
(percentage prevalence and sample size in terms of quarter-degree squares) is indicated along with mean measures of sensitivity,
specificity, kappa and AUC calculated for test data
 

Species

Sampling regime Test accuracy

Prevalence Sample size Sensitivity Specificity Kappa AUC 

LR DA LR DA LR DA LR DA LR DA LR DA

Grey-winged francolin 50 50 500 500 0·93 0·95 0·88 0·84 0·73 0·70 0·95 0·94
Ground woodpecker 50 50 500 500 0·94 0·93 0·86 0·84 0·72 0·69 0·95 0·94
Cape rock-thrush 50 50 500 500 0·89 0·92 0·87 0·85 0·70 0·69 0·95 0·93
Southern double-collared sunbird 50 50 300 300 0·89 0·92 0·87 0·86 0·70 0·70 0·95 0·94
Large-billed lark 50 50 500 300 0·91 0·94 0·90 0·88 0·76 0·75 0·95 0·96
Cape weaver 50 50 500 500 0·91 0·93 0·88 0·87 0·73 0·72 0·95 0·95
African pied starling 50 50 500 500 0·94 0·94 0·92 0·90 0·81 0·77 0·97 0·96
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Among those that have, Manel, Dias & Ormerod
(1999) demonstrated that sampling prevalence affected
model predictions but did not quantify how perform-
ance changed. Fielding & Haworth (1995) investigated
how training sample prevalence influenced sensitivity,
specificity and the matching coefficient in LR and DA
models, but in their study sample size changed con-
comitantly with prevalence. Cumming (2000), using
LR models of a hypothetical species’ range, showed
that AUC (intrinsic) declined as sampling prevalence
diminished. At very low prevalence AUC became erratic,
echoing findings of  analysis 2 here. Olden, Jackson
& Peres-Neto (2002) randomized species distributions
to demonstrate, with the help of  null models, that
high matching coefficients for both very rare and very
common species reflect random processes rather than
ecological phenomena.

Most authors studying the effects of range size on
model performance have neither controlled sampling
prevalence nor used null models (Manel, Dias &
Ormerod 1999; Pearce & Ferrier 2000b; Manel, Williams
& Ormerod 2001; Pearce, Ferrier & Scotts 2001; Kadmon,
Farber & Danin 2003). The patterns they reported
largely match those observed in analysis 3. Their
findings therefore potentially reflect statistical artefacts
rather than real range size effects.

Only one study we know of  suggests that range
size may have effects on model accuracy beyond those
explained by statistical artefacts. Stockwell & Peterson
(2002) modelled the distribution of 103 Mexican bird
species with GARP, an artificial intelligence procedure.
Training sample size was constant across species, and a
resampling procedure internal to GARP generated an
effective sampling prevalence of 50%. None the less,
widespread species yielded less accurate models ( lower
matching coefficients). Data quality may have played
a role: training data for widespread species possibly
included false negatives, i.e. sites where the species
occurred but had not been recorded. Yet performance for
one species improved when its southern and northern
populations were modelled separately, suggesting that
ecologically meaningful factors, such as local variation
in habitat preferences, could be responsible (Stockwell
& Peterson 2002). Although a crude approach, geograph-
ical data partitioning may prove useful in exploring
ecological hypotheses (Osborne & Suarez-Seoane 2002).

When attributing variation in model performance to
differences in species’ range sizes, consideration should
be taken of (i) the measure of range size used; (ii) other
ecological characteristics of the species that potentially
covary with range size; and (iii) the possibility of
statistical artefacts. We measured range size as area of
occupancy. Extent of occurrence, an alternative measure,
is potentially less entangled with sample size and sam-
pling prevalence, but might covary with other ecological
characteristics. Mobility, niche width and feeding habits
may all influence how accurately models identify habitat
associations (Mitchell, Lancia & Gerwin 2001; Pearce,
Ferrier & Scotts 2001; Kadmon, Farber & Danin 2003).

An algorithm immune to statistical effects would be
ideal. LR and DA are only two among many approaches
to distribution modelling. Other algorithms may be
less affected. GARP, for example, seems better able to
cope with small sample sizes (Stockwell & Peterson
2002). Ironically, the algorithm might, however, suffer
prevalence effects despite constituting a presence-only
approach, because in addition to presence records GARP
employs background samples for model training. Even
pure presence-only approaches, such as BIOCLIM,
may be afflicted by prevalence-related artefacts if test
data involve absence records (Kadmon et al. 2003). The
effects of sample size and sampling prevalence on models
explicitly incorporating spatial autocorrelation (Augustin,
Mugglestone & Buckland 1996; Hoeting, Leecaster &
Bowden 2000) should also be carefully examined.

In the absence of an ideal algorithm, one option to
overcome the statistical artefacts range size imposes
on model accuracy is the creation of  null models as
suggested by Olden, Jackson & Peres-Neto (2002). Results
presented here support the computationally less-
demanding approach of  fixing sampling prevalence
across species as a viable alternative. Differences in
sample size from species to species that arise in this way
obviously need to be taken into account. As the effects
of sample size on model performance are largely linear,
however, they can be removed with relative ease through
partial correlation analysis.

Pearce & Ferrier (2000a) and Vaughan & Ormerod
(2003) warn that models tend to over- or underestimate
a species’ probability of occurrence systematically if
sampling prevalence in training data is atypically high
or low. No systematic bias, however, was detected in
our analyses. Both natural and test sample prevalence
were distinctly lower than 50%, yet training data with a
sampling prevalence of 50% led to an optimal balance
between false positive (commission) and false negative
(omission) errors in both the full data set (Fig. 5b) and
test data (Fig. 6b). A training sample prevalence of
50% appears ideal, therefore, if  commission and
omission entail equal ecological costs (see below).

Commission and omission errors may not always
weigh equally, depending on what purpose model pre-
dictions serve (Fielding & Bell 1997). If, say, the aim of
a model is to identify all remaining habitat of a cri-
tically endangered species for purposes of protection,
the omission of  sites where the species is present may
be of more concern than the mistaken inclusion of
potentially suitable but unoccupied sites. In this case,
sampling prevalence might be set high to maximize
sensitivity. If  instead, we are using distribution models
to make inferences about a species’ range size and
population level, excessive commission could lead to
unjustified confidence in the species’ conservation
status. In this case, a lower sampling prevalence to
maximize specificity may be more precautionary.

We need to keep in mind, however, that sensitivity
and specificity can give false impressions of  model
performance at high and low prevalence because these
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measures do not correct for agreement expected to occur
by chance (Fielding & Bell 1997). Brenner & Gefeller
(1994) have proposed chance-corrected alternatives that
should be independent of  prevalence. Also of interest
may be a kappa-like metric suggested by Brennan &
Prediger (1981), which measures model performance over
and above a best a priori strategy, such as predicting a
species to be omnipresent. Like kappa and AUC, these
measures were introduced in a clinical context, but may
be worth exploring as tools in ecological modelling.



When comparing the performance of  distribution
models across species, we must distinguish ecologically
meaningful patterns from statistical artefacts. Reported
effects of species’ rarity or range size on model accuracy
appear to be largely artefactual. Both model algorithms
and accuracy metrics contribute to such artefacts. The
two algorithms assessed here, LR and DA, were
comparable in their susceptibility to sample size and
sampling prevalence. Both performed optimally at
intermediate sampling prevalence. Among the accuracy
metrics examined, AUC, unlike kappa, was practically
immune to prevalence-related artefacts. Its standard
error, however, rose towards the extremes of sampling
prevalence. Consequently, we encourage researchers
engaged in distribution modelling to utilize intermediate
levels of sampling prevalence, obtained by subsampling
where necessary. Furthermore, we recommend that
authors: (i) always report sampling prevalence and
distinguish it from a species’ range size; (ii) use a fixed
sampling prevalence for comparative studies in both
training and test data; and (iii) make use of accuracy
metrics such as AUC that are unaffected by prevalence
and correct for agreement expected to occur by chance.

Where these recommendations are not met, meas-
ures of accuracy cannot be taken at face value. The reli-
ability of models must then be judged with great care.

A species’ ecology is likely to affect its predictability.
Only once we minimize statistical artefacts, however,
will we be able to detect ecologically meaningful patterns.
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