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Abstract

For effective conservation planning, resource managers around the world require information on species distributions. Available
data, however, are often too coarse in spatial resolution to be of practical use. We describe four modelling techniques that harness
the information contained in coarse-scale occurrence records to predict species’ distributions at the finer resolutions relevant
to conservation officers in the field. The techniques are primarily statistical in nature, but can incorporate expert knowledge

reliminary
atellite-

g results.
ss-scale

doubtedly

models

g
ional
ag-
nd
uch
on species’ habitat preferences. We highlight the conceptual strengths and weaknesses of each, and perform a p
test of their comparative performance, using empirical data on the distribution of nine bird species in Uganda and s
derived environmental indices. Two techniques, the point sampling approach and iterative approach, yield encouragin
Because the dominance of environmental factors controlling species’ distributions shifts with spatial scale, however, cro
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1. Introduction

Humanity’s growth and pursuit of ever higher livin
standards have environmental consequences at reg
and global scales, including wide-spread habitat fr
mentation, the introduction of non-native species a
global climate change. To understand and mitigate s
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wide-ranging alterations to the world we live in and
depend on, we must assess and predict their ecological
implications (Root and Schneider, 1995).

Our ability to understand how ecosystems func-
tion and respond to change is complicated, however,
by issues of scale, both spatial and temporal, for at
least three reasons. Firstly, observed patterns – the pri-
mary cue in any analysis of cause and effect – are in
some sense simply an artefact of the scale of analy-
sis. As scale changes, patterns change (Levin, 1992;
Riitters et al., 1997; Thompson and McGarigal, 2002;
Hobbs, 2003; Vaughan and Ormerod, 2003). Secondly,
patterns observed at any one scale may be the result
of processes operating at another, or indeed a whole
suite of scales (Levin, 1992; Huston, 2002). Individ-
ual species, and therefore their communities, are often
influenced by factors at multiple scales (MacFaden
and Capen, 2002; Thompson and McGarigal, 2002;
Sergio et al., 2003), and the scale of response can
vary from organism to organism (DeGraaf et al., 1998;
Orrock et al., 2000; Mitchell et al., 2001; MacFaden and
Capen, 2002). Thirdly, the scales at which ecologists,
climate modellers, politicians and wildlife managers
operate are traditionally quite dissimilar, hindering
effective interdisciplinary exchange and communica-
tion (Root and Schneider, 1995; Lindenmayer, 2000;
Scott et al., 2002; Hobbs, 2003). Consequently, meth-
ods that can bridge scale gaps and reliably translate
findings at one scale to predictions at another would
be highly desirable (Root and Schneider, 1995; Hobbs,
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1999; Lennon et al., 2000) to more than 10,000 km2

in poorly surveyed parts of the world (e.g. Pan-
African databases on vertebrates and plants:Lovett
et al., 2000; Balmford et al., 2001; Jetz and Rahbek,
2002).

Can such coarse data be used to map species
distributions at the finer scales at which data are
needed for conservation planning? Species’ distribu-
tions have been postulated to exhibit some degree of
self-similarity across scales (e.g.Kunin, 1998; Harte
et al., 1999). Yet it is thought that the dominant pro-
cesses influencing species’ distributions shift from abi-
otic factors at coarse scales to biotic interactions at
high spatial resolution (Root, 1988; Cumming, 2002;
Kadmon et al., 2003). This shift in factors determining
distributional patterns is likely to complicate cross-
scale predictions.

Perhaps not surprisingly, therefore, attempts to
derive fine-grained distribution maps from coarse-
grained occurrence records have been rare and results
mixed (Lloyd and Palmer, 1998; Collingham et al.,
2000; Barbosa et al., 2003; Araújo et al., 2005).
The challenge lies in identifying environmental cor-
relates of species’ distributions at coarse scales that
also capture niche requirements at finer grain. Here
we describe four alternative approaches to this prob-
lem. Making use of the exceptionally high resolution
of the Bird Atlas of Uganda (Carswell et al., 2005)
and satellite-derived environmental indices, we then
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uch atlases tends to be coarse relative to the s
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gement, forestry planning and environmental im
ssessments generally operate at scales of severa
red hectares (Böhning-Gaese, 1997; Ferrier et
002; Bustamante and Seoane, 2004). In contrast

axonomic atlases typically map species distribut
t resolutions ranging from 100 km2 in well-studied
egions (e.g. butterflies and birds in the UK:Hill et al.,
-

est each approach’s ability to convert coarse oc
ence data (squares of 0.25◦ longitude/latitude) into
igh-resolution predictions (squares of 0.01◦ longi-

ude/latitude). In the process, we also assess wh
he performance of empirical models can be impro
y the incorporation of expert knowledge on hab
ssociations.

. Materials and methods

Models to turn coarse data into fine-scale pre
ions were constructed for nine bird species in Uga
he four approaches to cross-scale predictions
escribed in Section3. Here, we provide details o

he bird distribution data and environmental predic
sed by all four approaches. We also describe

inear discriminant analysis, the statistical algorit
sed by three of the four approaches, as well as
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process used to evaluate and gauge the performance of
models derived with each approach.

2.1. Bird distribution data

Occurrence records for birds were taken from data
compiled for theBird Atlas of Uganda (Carswell et al.,
2005). This atlas is unique among bird atlas projects
in southern and eastern Africa in that species occur-
rence was referenced to the precise point of observa-
tion (with decimal longitude and latitude) rather than
a geographic grid with resolutions of 0.25–0.50◦ (as,
for example, inA Bird Atlas of Kenya by Lewis and
Pomeroy, 1989; The Atlas of Southern African Birds
by Harrison et al., 1997; andThe Atlas of the Birds of
Sul do Save, Southern Mozambique by Parker, 1999).
It thus provides a unique opportunity to test high reso-
lution predictions.

To simulate the low resolution of avian distribu-
tion records elsewhere, the Ugandan data were coars-
ened to 0.25◦ (1/4◦) and intermediate resolutions of
1/8◦, 1/16◦, 1/32◦, 1/64◦ and 1/100◦. At each resolu-
tion, a species was designated as present in any grid
square containing at least one point locality observa-
tions of that species. Because sampling for theBird
Atlas of Uganda was not geographically systematic
(Tushabe et al., 2000, 2001), however, grid squares
lacking observations of the species were not automat-
ically assumed to represent absence. Only if a mini-
mum number of observations of other species had been
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(occupying 3–12 out of a total of 333 QDS), three
had intermediate ranges (43–64 QDS) and three were
among the most widespread in Uganda (98–136 QDS).

Habitat preferences of these species were extracted
from Sibley and Monroe (1990, 1993). Information on
each species’ altitudinal range was compiled fromThe
Birds of Africa (Brown et al., 1982), The Handbook of
the Birds of the World (del Hoyo et al., 1992) andThe
Field Guide to the Birds of East Africa (Stevenson and
Fanshawe, 2001).

2.2. Environmental variables

Environmental correlates were primarily derived
from satellite images collected twice daily over a 5-year
period (1992–1996) by the U.S. National Oceanic and
Atmospheric Administration’s Advanced High Resolu-
tion Radiometer satellite series. Environmental infor-
mation obtained from these images included a middle
infrared signal, indices of land surface temperature, air
temperature, the vapour pressure deficit and the nor-
malised difference vegetation index (NDVI). A further
index, cold cloud duration, was derived from 10 years
(1989–1998) of European Meteosat imagery. For more
information on these indices and their procurement, see
Table A1 in Appendix A. All imagery was compos-
ited into cloud-free, monthly images and re-sampled
from its original spatial resolution of 1 km2 to resolu-
tions of 1/4◦, 1/8◦, 1/16◦, 1/32◦, 1/64◦ and 1/100◦. For
each environmental index, we used temporal Fourier
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esolution), was the absence of a record interpr
s true absence of the species. Squares of ambi
tatus were excluded from both model calibration
valuation.

Given the patchy nature of point locality obser
ions in Uganda, aggregation of data from fine to co
esolution led to coarse data with a level of obse
ffort comparable to other bird atlases in the reg
gandan 1/4◦ squares with data on average drew
bservations from 10.24 point localities. For comp
on, the average number of records per 1/4◦ square in
outhern Mozambique was 5.11, in Zimbabwe 21.2
outh Africa, Lesotho and Swaziland 56.82 (Harrison
t al., 1997; Parker, 1999).

Nine bird species were chosen for analysis, base
he number of quarter-degree squares (QDS) they o
ied (Table 1). Three species had very narrow ran
nalysis, a data reduction technique ideal for summ
ng seasonal variables (Chatfield, 1996; Rogers et a
996), to extract the overall mean, minimum, ma
um and variance, plus the amplitude (strength)
hase (timing) of annual, biannual and triannual cyc
urthermore, altitude, derived from the U.S. Geo

cal Survey’s (USGS) global digital elevation mo
http://edcdaac.usgs.gov/gtopo30/gtopo30.html), was
ncluded among the explanatory variables, yield

total of 61 candidate predictors (seeTable A1 in
ppendix A).
Models incorporating expert knowledge on spec

abitat preferences also used the USGS Land C
ystem map (Version 2;http://edcdaac.usgs.gov/gl

abgoodeaf.html), re-sampled to 0.01◦ by neares
eighbour analysis (using IDRISI). USGS land co
ategories were paired with species’ habitat pre
nces as shown inTable 2.

http://edcdaac.usgs.gov/gtopo30/gtopo30.html
http://edcdaac.usgs.gov/glcc/tabgoode_af.html
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Table 1
The nine bird species whose recorded distributions in Uganda were used to test modelling approaches that rely on coarse-resolution data to
derive fine-resolution predictions of species’ occurrence

Species Local range Preferred habitat Observed habitat

Nahan’s Francolin (Pternistis
nahani, Phasanidae)

3 Humid forest (1000–1400 m) Evergreen broadleaf forest,savanna, dryland cropland
and pasture (1049–1283 m)

Fox’s Weaver (Ploceus spekeoides,
Passeridae)

6 Swamps (no altitude given) Savanna, dryland cropland and pasture (1046–1219 m)

Crested Guineafowl (Guttera
pucherani, Numididae)

12 Humid forest, edge (0–2200 m) Evergreen broadleaf forest,savanna, dryland cropland
and pasture, shrubland, cropland-woodland mosaic
(533–1524 m)

Lesser Honeyguide (Indicator
minor, Indicatridae)

43 Riparian woodland, savanna
(0–3000 m)

Savanna, dryland cropland and pasture, evergreen
broadleaf forest, cropland-woodland mosaic, shrubland,
grassland, water bodies,barren or sparsely vegetated
(719–2433 m)

Northern Puffback (Dryoscopus
gambensis, Corvidae)

54 Woods (900–2850 m) Savanna,dryland cropland and pasture, grassland,
cropland-woodland mosaic, evergreen broadleaf forest,
shrubland,urban/built-up, water bodies (636–2321 m)

Yellow-rumped Tinkerbird
(Pogoniulus bilineatus,
Lybiidae)

64 Forest, edge, savanna, scrub
(0–3000 m)

Dryland cropland and pasture, cropland-woodland
mosaic, savanna, evergreen broadleaf forest, shrubland,
grassland,water bodies, deciduous broadleaf forest,
barren or sparsely vegetated, mixed forest,urban/built
up (533–2809 m)

Bronze Munia (Spermestes
cucullatus, Passeridae)

98 Savanna, scrub, farmland
(0–2200 m)

Dryland cropland and pasture, savanna,
cropland-woodland mosaic,evergreen broadleaf forest,
water bodies, barren or sparsely vegetated, grassland,
shrubland,urban/built-up, deciduous broadleaf forest
(494–2433 m)

Green-backed Camaroptera
(Camaroptera brachyura,
Priniidae)

110 Humid forest undergrowth,
thickets (0–2200 m)

Savanna,dryland cropland and pasture,
cropland-woodland mosaic,water bodies, evergreen
broadleaf forest,grassland, shrubland,barren or
sparsely vegetated, deciduous broadleaf forest, mixed
forest,urban/built-up (533–2228 m)

Garden Bulbul (Pycnonotus barba-
tus, Pycnonoidae)

136 Woods, forest, secondary
growth, towns, usually near
water (0–3000 m)

Savanna,dryland cropland and pasture, water bodies,
cropland-woodland mosaic, shrubland, evergreen
broadleaf forest,barren or sparsely vegetated, mixed
forest, deciduous braodleaf forest (427 - 4536 m)

Species were selected based on their local range size (here the number of quarter-degree squares occupied by the species in Uganda), so as to
include species of low, intermediate and high prevalence in Uganda. Also indicated are each species’ published habitat preferences, as well as
the USGS land cover classes and altitudes observed at point locality occurrence records. Land cover classes are listed in order of the frequency
with which they corresponded to species’ point localities. Italics indicate observed land cover types and altitudes that fell outside the species’
published preferences.

2.3. Statistical algorithm

To distinguish the environmental characteristics
associated with species’ presence and species’ absence,
several of the modelling approaches described below
used non-linear discriminant analysis. Alternative
algorithms, such as logistic regression, would have
been equally applicable but were not tested in this study.

In discriminant analysis, training data serve to deter-
mine the multivariate mean and variance–covariance

structure of predictor variables for each of the response
variable’s states, here species presence and absence.
The distribution of predictor variables is assumed
to be normal, but their covariance need not be the
same for all states in non-linear discriminant anal-
ysis (Rogers et al., 1996). The posterior probability
of any data point belonging to one response state or
another is then calculated based on its position inn-
dimensional space relative to each state’s multivariate
mean, where distance between sample point and mean
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Table 2
Habitat types mentioned bySibley and Monroe (1990, 1993)as appropriate for the nine species analysed, and the USGS land cover types thought
to represent these habitats in Uganda

Published habitat Corresponding USGS landcover types that exist in Uganda

Humid forest or humid forest undergrowth Deciduous broadleaf forest, evergreen broadleaf forest, mixed forest, wooded wetland,
cropland-woodland mosaic

Forest or woods Deciduous broadleaf forest, evergreen broadleaf forest, mixed forest, wooded wetland,
cropland-woodland mosaic, shrubland, savanna

Riparian woodlands Deciduous broadleaf forest, evergreen broadleaf forest, mixed forest, wooded wetlands,
cropland-woodland mosaic, shrubland, water bodies

Secondary growth Deciduous broadleaf forest, evergreen broadleaf forest, mixed forest, wooded wetlands,
cropland-woodland mosaic, shrubland

Thicket Deciduous broadleaf forest, evergreen broadleaf forest, mixed forest, cropland-woodland
mosaic, shrubland, savanna

Scrub Shrubland, savanna
Savanna Savanna, shrubland, grassland, cropland-grassland mosaic, cropland-woodland mosaic,

dryland cropland and pasture
Edge Crop-land-woodland mosaic, shrubland, mixed shrubland-grassland
Farmland Dryland cropland and pasture, cropland-grassland mosaic, cropland-woodland mosaic,

grassland, barren or sparsely vegetated
Swamp Water bodies, wooded wetland
Near water Water bodies
Town Urban/built-up

is measured as Mahalanobis distance (Green, 1978;
Rogers et al., 1996). For presence–absence data, dis-
criminant analysis predicts a species’ probability of
occurrence.

We implemented non-linear discriminant analysis in
custom-written programs (QuickBasic). Predictor vari-
ables were selected in forward stepwise fashion based
on their ability to increase kappa, a chance-corrected
measure of model fit (Cohen, 1960). Stepwise variable
selection, although often criticised, was used because
(1) its use is widespread and thus represents a reality
in distribution modelling and (2) we were not con-
cerned with an ecological interpretation of the models.
Our models guarded against unrealistic outcomes by
restricting predictions to sites environmentally simi-
lar (as indicated by the Mahalanobis distance) to those
included in training data.

2.4. Model evaluation

Models were evaluated based on how well they pre-
dicted test data, i.e. data not used in model training.
In models trained at coarse resolution, test and train-
ing data were not strictly independent, because both
datasets derived from the point locality observations
recorded in theBird Atlas of Uganda. Yet test data

were of finer spatial resolution and therefore novel to
these models.

Accuracy was measured as the area under the curve
(AUC) of receiver operating characteristics (ROC)
plots, here calculated non-parametrically using the
Wilcoxon statistic (Hanley and McNeil, 1982; Pearce
and Ferrier, 2000). AUC facilitates meaningful compar-
isons between models of species with different range
sizes, because it is largely insensitive to species’ preva-
lence (McPherson et al., 2004). It can, however, become
erratic at extremely low or high prevalence, so the pro-
portion of presence samples in test data was constrained
to fall within 0.35–0.65. Where necessary, this was
achieved by sub-sampling records in the more abun-
dant category, either presence or absence.

Following Swets (1988), we considered model
accuracy good if 0.9 < AUC≤ 1.0, reasonable if
0.7 < AUC≤ 0.9, and poor if 0.5 < AUC≤ 0.7. As AUC
values of 0.5 correspond to random performance, this
cut-off served as a worst-case null model for high-
resolution predictions.

Comparisons of accuracy achieved by the dif-
ferent modelling approaches were undertaken non-
parametrically with Wilcoxon’ signed rank tests for
matched pairs or Friedman’s test for related samples
(McClave and Dietrich, 1994).
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2.5. Gauging expectations: fine-grained models

Models trained at coarse resolution cannot be
expected to predict fine-grained patterns any better than
models trained directly at high resolution. To gauge
expectations for cross-scale models, we therefore cal-
ibrated one model per species with fine-grained data.

Thesefine models were trained at a resolution of
1/64◦ using non-linear discriminant analysis. Two-
thirds of the 1/64◦ data were used for calibration, the
remainder for model evaluation. The AUC achieved
served as an ideal-case scenario, indicating the maxi-
mum accuracy expected from models trained at coarse
resolution.

3. Four approaches to cross-scale predictions

3.1. Direct approach

Most avian distribution data for eastern and southern
Africa have a coarser spatial resolution than available

remotely sensed environmental data. Any grid square
in the region’s biodiversity atlases, therefore, contains
many component ‘pixels’ (picture elements), each of
which has a unique set of environmental attributes. To
train distribution models at the atlas’ original resolu-
tion (e.g. 0.25◦), pixel-level attributes within each atlas
square must be amalgamated, for example, by averag-
ing. Model algorithms, such as discriminant analysis
or logistic regression, can then identify the statistical
relationship between species occurrence and the corre-
sponding averaged environmental conditions.

The direct approach simply projects the statisti-
cal relationship thus identified onto individual pixels,
applying parameters calibrated at coarse grain to fine-
grained environmental attributes (Fig. 1). The method
is intuitive and has previously been used by other
authors (Collingham et al., 2000; Barbosa et al., 2003;
Araújo et al., 2005).

The direct approach was implemented here using
non-linear discriminant analysis, a training resolution
(atlas square size) of 1/4◦ and a pixel size for predic-

F coarse tion of
a tistical and the
s gained mental
v ’ distrib
ig. 1. The direct approach to high resolution predictions.Step 1
vailable species’ distribution records.Step 2 establishes the sta
pecies’ presence and absence.Step 3 utilises parameter values
ariables to produce high-resolution predictions of the species
ns fine-grained environmental variables to the spatial resolu
relationship between these coarse environmental conditions
in step 2 in conjunction with the original fine-grained environ
ution.
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tions of 1/64◦. Training sample prevalence (the propor-
tion of presence records in training data) was coerced to
0.5, because this appears to maximise algorithmic per-
formance in discriminant analysis (McPherson et al.,
2004). To achieve 0.5 prevalence, the more abundant
category (e.g. absence) was sub-sampled randomly to
select only as many localities as were available in the
less abundant category (e.g. presence).

Unfortunately, the direct approach suffers concep-
tual drawbacks. The variability among pixels’ envi-
ronmental attributes within a square may exceed the
variability among squares’ average conditions. Further-
more, the attributes of any one pixel within an atlas
square are unlikely to match the square’s average for
each environmental variable (Huston, 2002). Model
parameters thus risk being applied to environmental
conditions (variable values and combinations thereof),
not encountered during model training. Under such cir-
cumstances, predictions may be unrealistic or at least
unreliable.

The following three alternative approaches to fine-
grained predictions attempt to circumvent this problem.

3.2. Iterative approach

The iterative approach is closely related to the direct
approach, but attempts to minimise the discrepancy
between the environmental values encountered during
calibration and prediction. It moves from coarse (atlas
square) to fine (pixel) resolution incrementally, dou-
b tep.
M of
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The iterative approach was implemented with a
starting resolution of 1/4◦, cycling through four rounds
to predictions at 1/64◦. Non-linear discriminant anal-
ysis served as the model algorithm. At all resolutions,
training sample prevalence was coerced to 0.5, via
sub-sampling. As a safeguard against error propaga-
tion from one iteration to the next, presence localities
used to calibrate the models in iterations 2–4 had to fall
within atlas squares known to harbour the species at
the original (1/4◦) resolution. No analogous constraint
was placed on absence localities, since fine-resolution
areas of absence can legitimately occur within coarse-
resolution squares of presence. Predictions at each res-
olution were evaluated with data of equal resolution.
They were also evaluated with data at the original,
coarse resolution (1/4◦) to examine the adequacy of
such a test, which might be performed when no fine-
resolution data are available (hereafter ‘coarse-grain
test’).

Iterative models were built both purely empirically
(pure models) and under inclusion of expert knowl-
edge on habitat associations (habitat models). Inhabi-
tat models, presence squares selected to re-calibrate
models at finer resolutions had to contain an appropri-
ate land cover category. An additional requirement for
appropriate altitude did not yield significantly different
results, so is not discussed further.

3.3. Point sampling approach
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odels are first calibrated at the original resolution
tlas squares (e.g. 1/4◦). If the model performs satisfa

orily at that resolution, its parameters are used to m
redictions at the next finer resolution (1/8◦). These
redictions are classified as predictions of presen
bsence using a predicted probability of occurrenc
.5 as the threshold. The outcome serves as tra
ata for a new model, re-calibrated at double the s

ng resolution (i.e. at 1/8◦), and the process begins an
Fig. 2).

The underlying rationale is that the average co
ion in a group of pixels is closer in value to the aver
ondition in half the group than to the attribute
ny individual group member. The approach assu

herefore, that models calibrated at coarse grain m
ecent predictions at finer grain if the differen
etween resolutions is not too large.
The point sampling approach avoids the ama
ation of pixel-level attributes. It randomly choos
ithin each atlas square, a fixed number of envi
ental pixels to calibrate models at high resolu
irectly (Fig. 3). Lloyd and Palmer (1998)employed

his approach in a study of South African bulbuls, al
ampling only a single (the central) pixel per a
quare. Although intuitive, the approach makes
learly unrealistic assumption that all component
ls of atlas squares known to harbour a species em
uitable environmental conditions, and those of squ
ot housing the species unsuitable environmental
itions.

In preliminary analyses the approach seemed in
itive to its starting resolution (1/2◦, 1/4◦ or 1/8◦) and
he number of pixels sampled per atlas square (10
00). Analyses reported here used a starting resol
f 1/4◦ and pixel size of 1/100◦. Again, non-linear dis
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Fig. 3. The point sampling approach to high resolution predictions.Step 1 identifies the species’ distribution at coarse resolution (black, presence;
white, absence) and picks a fixed number of point localities randomly within each square.Step 2 matches each point locality to an underlying
fine-resolution pixel and records its environmental attributes.Step 3 uses these environmental attributes to calibrate model parameters.Step 4
applies the calibrated parameters to fine-resolution environmental data to predict the species probability of occurrence at a fine spatial scale.

criminant analysis served as the model algorithm. In
pure models, 50 pixels per square were sampled at ran-
dom. Inhabitat models, sampled pixels had to contain
a land cover category judged suitable for the species.

Given the randomised nature of sampling, 30 tri-
als were run per species. For comparison with other
approaches, both model accuracy and predicted proba-
bility of occurrence maps were averaged across the 30
trials per species.

3.4. Clustering approach

The clustering approach is different conceptually in
that it uses information only from atlas squares known
to harbour the species. It assumes (1) that each occupied
square must contain some favourable habitat and (2)
that favourable habitat is more homogenous from one
occupied square to the next than unfavourable habitat.
Accordingly, component pixels of atlas squares har-

Fig. 2. Iterative approach to high resolution predictions.Iteration 1 begins by calibrating model parameters based on coarse-resolution records,
e.g. 1/4◦, of both the species’ observed distribution and environmental variables. If the model yields satisfactory predictions at coarse resolution,
its parameters are applied to environmental data at double the resolution, i.e. 1/8◦, for finer-resolution predictions of the species’ probability of
occurrence. Among these predictions,iteration 2 selects areas of predicted presence and absence for model re-calibration, taking into account
sampling prevalence and correspondence with coarse resolution data. Model parameters are then calibrated anew, using predicted occurrence
and environmental data at a resolution of 1/8◦. Next, the new parameters are applied to environmental data of even higher resolution, e.g. 1/16◦,
for predictions of the species’ probability of occurrence at ever finer resolution.Iteration 3 and any subsequent iterations follow the established
pattern: selecting sites for re-calibration among predictions of the previous round; renewed parameterisation of the model using environmental
data of equal resolution as predictions; application of parameters to finer environmental data.
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Fig. 4. The clustering approach to high resolution predictions.Step 1 identifies the areas of species presence at coarse resolution, squares A–H.
Step 2 determines the environmental attributes of the finer-resolution pixels constituting the coarse presence squares.Step 3 groups the finer
resolution pixels into clusters based on their environmental attributes, and then examines cluster membership. Ideally, one cluster contains a
number of pixels from each of the original coarse presence squares.Step 4 assumes this cluster to represent habitat suitable to the species, and
maps it back into geographic space as a prediction of species presence at fine resolution.

bouring the species are jointly subjected to cluster anal-
ysis. Resulting clusters whose membership includes
pixels from all or most of the original squares, are
then mapped back into geographic space as sites of
species presence (Fig. 4). To predict species occurrence
beyond the boundaries of squares used in analysis,
Mahalanobis distances – based on the chosen cluster’s
multivariate mean and covariance structure – can be
calculated to identify environmentally similar locations
elsewhere (Green, 1978).

The approach’s assumptions seem reasonable.
Unless atlas records derive from sightings of purely
transient individuals, atlas squares harbouring a species
should contain suitable habitat. Habitat favoured by a
species should also be less variable than the general
environment, unless (1) the species is an extreme gen-

eralist, (2) the study area is large enough that habitat
preferences exhibit local adaptations, or (3) predictors
poorly capture the species’ true requirements (e.g. open
space regardless of land cover type).

Three methodological impediments, however, affect
the approach. First, as in all cluster analyses, it is dif-
ficult to determine objectively how many clusters to
divide data into. Second, misleading or inconclusive
cluster arrangements could result if irrelevant environ-
mental attributes mask differences in indices impor-
tant to the species. Third, current computing capacity
imposes severe limitations on practicability: due to the
large sample sizes involved, cluster algorithms in com-
mercially available software proved unable to cope
with all but the three most narrowly-ranging species
analysed here.
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For these three species, the approach was imple-
mented in S-Plus, usingclara, a medoid-based cluster-
ing algorithm designed for large datasets (Insightful,
2001). Several cluster configurations were tested per
species, and average silhouette width, an index of clus-
ter separation (Insightful, 2001), was used to identify
the best among them. Forpure models, all component
pixels of atlas squares harbouring the species were used
in clustering. Forhabitat models, only pixels of suit-
able land cover were submitted.

4. Results

4.1. Gauging expectations: fine-grained models

Models calibrated at high resolution (1/64◦) pre-
dicted test data successfully (AUC≥ 0.7) in only the
three most narrow-ranging species (Table 3). For all
remaining species,fine models performed no better
than random (AUC≈ 0.5), with poor predictions for
both presence and absence (e.g. compareFig. 5a and
b). Expectations for models calibrated at coarse reso-
lution, therefore, were low for most species.

4.2. Direct approach

The predictive accuracy of direct approach mod-
els did not differ significantly from that offine mod-

els (Wilcoxon’s Z =−0.77, p = 0.44, n = 9; Fig. 6),
even though the choice of predictor variables showed
little overlap (i.e. the predictor variables chosen by
direct models were generally different from those cho-
sen in fine models; seeTable A2 in Appendix A).
Only one narrow-ranging species, however, was pre-
dicted highly accurately. Predictions were poor for
all other species, and grew poorer as species’ range
size increased (Spearman rank correlation:rs =−0.80,
p < 0.01,n = 9; Table 3).

The approach frequently encountered environmen-
tal conditions distinct from those experienced during
calibration, where no predictions could be made. It also
tended towards ambiguous predictions (predicted prob-
ability of occurrence≈ 0.5) and produced distribution
maps of speckled appearance (Fig. 5c).

4.3. Iterative approach (pure models)

High-resolution predictions of iterative models
were comparable in overall accuracy tofine mod-
els (Wilcoxon’s Z =−1.60, p = 0.11, n = 9; Fig. 6),
again despite little overlap in predictors (Table A2,
Appendix A). The approach produced useful models
for two narrow-ranging species (Table 3). The correla-
tion between range size and accuracy was, however, not
significant (rs =−0.3, p = 0.43,n = 9) unless the poor
model for Nahan’s Francolin (the most narrow-ranging
species) was excluded (rs =−0.86,p < 0.01,n = 8).
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esser Honeyguide (43) 0.42 0.68
orthern Puffback (54) 0.45 0.58
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reen-backed Camaroptera (110) 0.50 0.5
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0.83 0.83 0.84 0.90
0.74 0.73 0.59 0.64

0.63 0.66 0.68 0.66
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0.52 0.52 0.49 0.49

s were constructed either purely empirically (pure) or under inclusion o
.7, bolded) were achieved only rarely.
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Fig. 5. Comparative performance of different modelling approaches, displaying the observed distribution of three species at 1/4◦ (empty squares)
and 1/100◦ (black dots) in (a), alongside country boundaries (black lines) and water bodies (grey). High-resolution predictions are shown for
fine models (b), the direct approach (c), iterative approach (d) and point sampling (e). Predicted probabilities of occurrence range from 0 (red)
through 0.5 (yellow) to 1 (green). Areas where models made no predictions, because environmental conditions differed from those encountered
during calibration, are shown in grey, water in blue.



J.M. McPherson et al. / Ecological Modelling 192 (2006) 499–522 511

Fig. 6. Comparative accuracy of models trained at coarse resolution
via the direct, iterative or point sampling approaches and models
trained at fine resolution. Accuracy was measured as the area under
ROC curves (AUC). As a point of reference, an AUC of 0.5, indicative
of random null models, is shown on the left. Box-plots indicate the
median (thick line), inter-quartile range (box) and outliers (filled
circles) of AUC values achieved for nine species.

The approach was able to make predictions for most
of the study region. Predicted distributions appeared
more coherent than in the direct approach and suf-
fered less ambiguity (Fig. 5d). Their general shape
was determined early during the iterative process, with
only small refinements as spatial resolution increased
(e.g. Fig. 7). As a result, changes in accuracy were
also limited and there was no significant relationship
between the spatial resolution of predictions and the
value of AUC calculated for equal-resolution test data
(Friedman’s test:χ2 = 5.83, p = 0.12, d.f. = 3,n = 9).
Predictions of the iterative approach were hence no
more accurate at 1/16◦ or 1/32◦ than at 1/64◦.

Coarse-grain tests proved unreliable for model eval-
uation. Although AUC values achieved in coarse-grain
tests were significantly correlated with AUC values
obtained for fine resolution test data (rs = 0.50,p < 0.01,
n = 36), coarse-grain accuracy was only a weak predic-
tor of accuracy at fine resolution (r2 = 0.29,p < 0.01,
n = 36).

4.4. Point sampling approach (pure models)

Point sampling models showed only limited over-
lap with fine models in their selection of pre-
dictors (Table A2, Appendix A), yet, astonish-

ingly, achieved higher accuracy overall (Wilcoxon’s
Z =−2.19,p = 0.03,n = 9, Fig. 6). Useful predictions
were achieved for four species (Table 3). Accuracy,
however, declined sharply with increasing range size
(rs =−0.97,p < 0.01,n = 9). Predicted distributions fol-
lowed occurrence records tightly in narrow-ranging
species, but for commoner species the approach tended
to predict presence throughout the region (Fig. 5e).

The approach was computationally slow, due to the
need for several replications per species, and not sig-
nificantly better than the direct or iterative approach
(Friedman’sχ2 = 2.00,p = 0.37,n = 9).

4.5. Clustering approach (pure models)

The clustering approach, implemented for only the
three most narrow-ranging species, proved impracti-
cable. In each species, the best cluster configuration
contained two clusters, of which one included pixels
from a majority of the original atlas squares. In all three
species, however, this cluster proved ill-defined with
regards to the study region. Based on Mahalanobis dis-
tances, most 1/100◦ pixels in Uganda were as similar
to the cluster’s multivariate mean as the original clus-
ter members defining that mean. Essentially, therefore,
the clustering approach predicted each of the narrow-
ranging species to be omnipresent.

4.6. Inclusion of expert knowledge
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Fig. 7. Iterative predictions of the distribution of Lesser Honeyguide in Uganda. For each iteration (1–4), the left panel indicates sites used for
model parameterisation, with green representing presence and red absence. The central panel shows model predictions at the spatial resolution
of calibration sites. Predictions at double the resolution appear in the panel on the right. Species’ predicted probability of occurrence ranges from
0 (red) through 0.5 (yellow) to 1 (green). No predictions were made (grey) where environmental conditions differed from those encountered
at calibration sites. Black dots indicate the species’ observed distribution. Water bodies are shown in blue, national borders in white. Model
performance is indicated in the bottom left corner of each panel as training accuracy (central panels) or test accuracy (right panels).
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In the clustering approach, clusters remained ill-
defined even when only pixels of the species’ preferred
land cover category were taken into consideration.

5. Discussion

5.1. Previous work on cross-scale predictions

Models calibrated at coarse resolution were mostly
unsuccessful at predicting the fine-grained distribu-
tions of Ugandan bird species. Prima facie, this sug-
gests that the four approaches presented are ineffective
tools for cross-scale predictions.

Previous studies provide a mixed opinion on
this. Collingham et al. (2000), applying the direct
approach to three non-indigenous plant species in Great
Britain, found that models parameterised at a reso-
lution of 10 km× 10 km yielded poor predictions at
2 km× 2 km. Using a comparable approach on 12 sim-
ulated species’ distributions, ecologists at theUFZ
Centre for Environmental Research in Leipzig, Ger-
many, found that models trained at landscape-level pre-
dicted patch-level patterns no better than null models
(Carsten Dormann, personal communication, 21 Jan-
uary 2004).

In contrast,Barbosa et al. (2003), who used the
direct approach to predict the fine-grained distribu-
tion of otters in Spain and Portugal, judged their
results satisfactory; assessment of accuracy was, how-
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Due to the small number of resident ornithologists,
even coverage of the country could not be ensured
during data collection for theBird Atlas of Uganda
(Tushabe et al., 2000, 2001). Many areas, therefore,
received little or no sampling effort. Consequently,
records of each species’ occurrence may be geograph-
ically incomplete, and may not adequately reflect the
full range of habitats used. Furthermore, incomplete
coverage means that the absence of a record does not
reliably indicate absence of the species. Although both
training and test data attempted to guard against incor-
rect absences, the safeguard used (a threshold number
of observations per grid square) was far from fail-
safe. If observers preferentially recorded specific taxa,
such as rare or conspicuous species, while ignoring
others that were present but of less interest, improper
absences may nonetheless have been included in the
analyses.

Biased presence records and incorrect absence data
could have led to poor model parameterisation. Incor-
rect absence data also call into question the results
on model accuracy: if test data are riddled with mis-
takes, it becomes difficult to assess what represents
genuine flaws in model predictions versus sampling
inaccuracies. Because the likelihood of false absences
diminishes as data resolution coarsens (Edwards et al.,
1996), models trained at fine resolution may have been
worse affected. This might explain the tendency of
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(Mitchell et al., 2001; Hepinstall et al., 2002; Kadmon
et al., 2003).

5.3. The choice of predictors

Although cross-scale approaches performed no
worse thanfine models overall, they each had draw-
backs, and only one – the point sampling approach –
yielded reasonable accuracy for all three species for
which fine models indicated the potential.

The unsatisfactory performance of cross-scale mod-
els could stem, in part, from the use of predictor vari-
ables adequate only for the mapping of coarse but not
fine patterns in a species’ distribution. The satellite-
derived predictors used in this study relate mostly
to climatic conditions, although the NDVI serves as
a surrogate for net primary productivity (Hay, 2000;
Kerr and Ostrovsky, 2003) and the middle infrared sig-
nal can aid in the discrimination of vegetation types
(Hay, 2000; Nagendra, 2001). Abiotic factors such
as climate probably determine a species’ distribution
at coarse resolution. At finer scales, however, biotic
attributes become important, including the availabil-
ity of foraging resources and nest sites, and inter-
actions with predators, competitors, and other indi-
viduals of the same species (Root, 1988; Cumming,
2002; Kadmon et al., 2003). Furthermore, the pat-
tern of absence and presence within the broad bound-
aries of a species’ range are also affected by dispersal
ability and stochastic events that shape the species’
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The success of climatic indices in modelling distri-
butions at high resolution does not negate the impor-
tance of biotic interactions and stochastic events at fine
spatial grains. The dominance of processes shaping
species’ distributions may shift only gradually over a
large range of scales (Hartley et al., 2004). Further-
more, these processes likely are hierarchically struc-
tured, such that factors influential at coarse scales shape
the processes operating at fine scales (Whittaker et al.,
2001). Hierarchical control and a gradual succession of
controlling processes would both grant some – albeit
diminished – predictive power to abiotic variables at
relatively fine spatial grains.

In our analyses, predictors chosen byfine models
were dissimilar from those chosen by models trained
at coarse grain. Yet there was no obvious trend away
from purely climatic variables, such as temperature, to
more biotic indices, such as NDVI. The limited overlap
in predictors may in part be the consequence of inad-
equate training data (poor model parameterisation), or
may reflect collinearity among some predictors.

Overall, it is doubtful that inappropriate predictors
were responsible for the poor performance of cross-
scale models in Uganda. Inadequate training data are
more likely to be at fault.

5.4. The role of expert knowledge

Models were not improved by inclusion of expert
knowledge on species habitat associations. Expert
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environment may deviate considerably from human
classifications of habitat (Knight and Morris, 1996;
Cablk et al., 2002). Reliance on land cover categories
will certainly be problematic where species’ preferred
habitat types are too fine-grained to be captured in
land cover maps and/or difficult to discriminate by
remote sensing (Edwards et al., 1996). The remotely
sensed land cover map used in this study distinguished
only 24 land cover types globally. Alternative land
cover categorisations, such as the International Geo-
sphere Biosphere Programme classification scheme or
Olson’s Global Ecosystem Framework (both available
at http://edcdaac.usgs.gov/glcc/globdoc20.html), did
not, however, yield a better match with species’ habitat
preferences.

Comparative studies appear rare, but purely
knowledge-based and purely empirical models have
been found to yield similar results (Bolliger et al.,
2000; Petit et al., 2003). Consequently, an integration
of the two approaches may generally fail to improve
results. In a study encompassing distribution models
for 93 Australian vertebrates, incorporation of expert
knowledge into otherwise empirical models did not sig-
nificantly improve performance (Pearce et al., 2001).
Results presented here suggest that this holds true even
when models attempt to bridge two spatial scales, a sit-
uation in which knowledge-based rules may appear to
have some advantage.
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to provide quick answers. In essence, however, they
attempt to fashion data where none exist. Their often
persuasive map outputs risk creating a false sense of
certitude. Conclusive evaluation of the strengths and
weaknesses of these approaches will require data of
suitable quality. Appropriate empirical data with fine
spatial resolution may be difficult to come by, but
researchers could resort to simulated data.

Based on the results presented here, and the expe-
rience of other authors (Lloyd and Palmer, 1998;
Collingham et al., 2000), the point sampling and iter-
ative approaches look most promising. Although data
inadequacies bar any firm conclusions, the point sam-
pling approach is likely to work best for species with
small ranges whose niche requirements are narrow and
geographically clustered. The iterative approach, in
contrast, may provide more nuanced predictions for
species whose niche is less restricted.

Refinements may be possible in both approaches, for
example, by taking into account the species’ expected
prevalence at fine resolution. Considerable progress
has recently been made on cross-scale predictions of
species’ prevalence (Hartley et al., 2004): Kunin and
colleagues (Kunin, 1998; Kunin et al., 2000) andHe
and Gaston (2000)developed methods to estimate a
species’ total area of occupancy at fine resolution from
coarse-grained distribution maps. Such estimates could
be used to manipulate a species’ prior probability of
occurrence in models involving discriminant analysis
or alternative statistical algorithms.
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dict, over the large extent, the species’ likelihood of
occurrence at high spatial resolution, conditional upon
broad-scale environmental suitability. If found, reliable
methods of cross-scale prediction could be of immense
practical use.
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Appendix A

Table A1
The 61 satellite-derived predictor variables available for model parameterisation

Satellite variable Description Measure Name

Cold cloud duration
(CCD)

An index of rainfall, based on the number of
hours a locality was covered by clouds
assumed to bear rain. Rain-bearing clouds are
associated with a particular threshold
temperature at their tops, which is recorded by
channel 2 of the High Resolution Radiometer
on board the Meteosat satellite series of the
European meteorological satellite programme.
On a monthly basis, the index is thought to be
accurate to±38 mm (Hay and Lennon, 1999).

Mean CCDmean
Maximum CCDmax
Minimum CCDmin
Variance CCDvar
Amplitude of annual cycle CCDamp1
Phase of annual cycle CCDphase1
Amplitude of biannual cycle CCDamp2
Phase of biannual cycle CCDphase2
Amplitude of triannual cycle CCDamp3
Phase of triannual cycle CCDphase3

Digital elevation model
(DEM)

The United State’s Geological Survey provides
a digital elevation model with a resolution of
30 arc seconds, here used to determine mean
altitude per grid square.

Mean altitude above sea level DEM

Land surface temperature Land surface temperature indices are
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Maximum LSTmax
Minimum LSTmin
Variance LSTvar
Amplitude of annual cycle LSTamp1
Phase of annual cycle LSTphas
Amplitude of biannual cycle LSTamp2
Phase of biannual cycle LSTphas
Amplitude of triannual cycle LSTamp3
Phase of triannual cycle LSTphas
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Maximum MIRmax
Minimum MIRmin
Variance MIRvar
Amplitude of annual cycle MIRamp1
Phase of annual cycle MIRphase1
Amplitude of biannual cycle MIRamp2
Phase of biannual cycle MIRphase2
Amplitude of triannual cycle MIRamp3
Phase of triannual cycle MIRphase3
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Table A1 (Continued )

Satellite variable Description Measure Name

Normalised difference
vegetation index
(NDVI)

An index of vegetation biomass derived from
AVHRR channels 1 and 2, which measure
reflected solar radiation in the visible red and
near infrared, respectively. Like other
spectral vegetation indices, the NDVI
exploits the fact that the photosynthetic
pigments of plants absorb visible light in the
red wavelengths, while mesophyll tissue
(non-photosynthesising plant tissue) reflects
near-infrared wavelengths. This leads to a
divergence in reflectance between the visible
and near-infrared, which distinguishes
vegetation from bare soil (Hay, 2000).

Mean NDVImean
Maximum NDVImax
Minimum NDVImin
Variance NDVIvar
Amplitude of annual cycle NDVIamp1
Phase of annual cycle NDVIphase1
Amplitude of biannual cycle NDVIamp2
Phase of biannual cycle NDVIphase2
Amplitude of triannual cycle NDVIamp3
Phase of triannual cycle NDVIphase3

Air temperature (TAIR) This index of air temperature assumes that
the radiometric (surface) temperature of a
fully vegetated canopy is in equilibrium with
ambient air temperature, because dense
vegetation has a heat capacity similar to its
surrounding air. The index therefore
regresses LST against NDVI to determine
what value LST takes when NDVI is
suggestive of full vegetation cover (generally
0.65). At this point, LST should measure
canopy surface rather than soil surface
temperature. The resulting index is accurate
to ±2.98–3.93◦C (Goetz
et al., 2000).

Mean TAIRmean

Maximum TAIRmax
Minimum TAIRmin
Variance TAIRvar
Amplitude of annual cycle TAIRamp1
Phase of annual cycle TAIRphase1
Amplitude of biannual cycle TAIRamp2
Phase of biannual cycle TAIRphase2
Amplitude of triannual cycle TAIRamp3
Phase of triannual cycle TAIRphase3

Vapour pressure deficit
(VPD)

An estimate of near-surface atmospheric
humidity indicative of the ‘drying power’ of
air (Goetz et al., 2000). It’s computation
requires an estimate of the near-surface
water vapour content of air (U), which is
obtained via a split-window algorithm using
AVHRR channels 4 and 5. U then serves to
determine the dew point temperature at
which saturation and condensation would
occur. To obtain the VPD, actual vapour
pressure (determined with the help of TAIR,
see above) is subtracted from saturation
vapour pressure. The index is accurate to
between±6.0 mbar and±10.9 mbar,
depending on the satellite imagery’s spatial
resolution (Goetz et al.,
2000; Hay and Lennon, 1999).

Mean VPDmean

Maximum VPDmax
Minimum VPDmin
Variance VPDvar
Amplitude of annual cycle VPDamp1
Phase of annual cycle VPDphase1
Amplitude of biannual cycle VPDamp2
Phase of biannual cycle VPDphase2
Amplitude of triannual cycle VPDamp3
Phase of triannual cycle VPDphase3

Imagery from the US National Oceanic and Atmospheric Administration’s satellites were obtained as 10-day maximum value composites from
the US Geological Survey’s EROS Data Center (http://edcdaac.usgs.gov/1KM/1kmhomepage.asp). Imagery from the European meteorological
satellite programme were obtained courtesy of Fred Snijders through the ARTEMIS program of the United Nations Food and Agricultural
Organisation. Monthly compositing was undertaken using ERDAS IMAGINE software (v.8.5). Fourier processing of the resulting monthly
data series was accomplished through custom-written programs in QuickBasic. Custom-written programs were also used for re-sampling, to
aggregate imagery to coarser resolution by averaging only valid terrestrial pixels.

http://edcdaac.usgs.gov/1km/1kmhomepage.asp
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Table A2
Model details, indicating (a) the number of occurrence records available per species at each spatial resolution and the predictor variables selected in (b) fine, (c) direct, (d) iterative
and (e) point sampling models

Species Nahan’s
Francolin

Fox’s
Weaver

Crested
Guineafowl

Lesser
Honeyguide

Northern
Puffback

Yellow-rumped
Tinkerbird

Bronze Munia Green-backed
Camaroptera

Garden Bulbul

(a) Number of occurrences at each spatial resolution
1/4 3 6 11 41 51 61 94 105 130
1/8 3 6 20 50 62 99 133 163 215
1/16 4 6 22 54 67 127 157 204 282
1/32 7 6 25 57 73 142 167 236 340
1/64 9 6 26 60 76 154 175 246 362
1/100 11 6 27 60 76 156 175 256 390

(b) Fine model predictor variables (trained at 1/64◦ to predict at 1/64◦)
1. VPDmean 1. VPDmean 1. NDVImean 1. VPDmin 1. CCDphase1 1. TAIRmean 1. MIRmean 1. CCDamp3 1. MIRamp1

2. CCDvar 2. MIRamp2 2. MIRamp3 2. NDVImean 2. MIRphase1 2. MIRmax 2. MIRphase1
3. NDVIphase2 3. MIRmax 3. TARIamp1 3. VPDphase1 3. TAIRphase1 3. CCDamp2 3. VPDphase2

4. LSTamp2 4. CCDamp2 4. CCDvar 4. CCDamp3 4. VPDamp3
5. MIRphase2 5. NDVImax 5. DEM 5. CCDamp1 5. MIRphase3
6. LSTphase2 6. MIRamp2 6. LSTmax 6. LSTphase2 6. MIRphase2
7. MIRphase1 7. LSTphase2 7. LSTphase3 7. TAIRphase2 7. LSTphase3
8. NDVIphase1 8. LSTphase3 8. NDVIvar 8. NDVImean 8. MIRmean
9. LSTmax 9. VPDmean 9. CCDmean 9. MIRmin 9. NDVImax

10. MIRphase3 10. MIRamp3 10. MIRvar 10. TAIRamp1
EPV 6.0 4.0 5.7 4.4 5.0 10.1 11.0 33.7 8.7

(c) Direct approach predictor variables (trained at 1/4◦ to predict at 1/64◦)
1. MIRphase1 1. VPDmin 1. MIRmean 1. CCDamp3 1. CCDphase1 1. NDVImin 1. MIRphase1 1. CCDphase2 1. LSTvar

2. TAIRvar 2. NDVImean 2. LSTamp2 2. LSTamp2 2. MIRphase2 2. VPDva-
3. NDVImin 3. NDVIamp3 3. DEM 3. MIRmax

4. MIRamp2 4. LSTphase3
5. MIRamp3 5. TAIRphase2
6. MIRphase1

EPV 3.0 6.0 5.5 13.7 15.0 6.3 4.2 5.0 5.0
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Table A2 (Continued )

Species Nahan’s
Francolin

Fox’s
Weaver

Crested
Guineafowl

Lesser
Honeyguide

Northern
Puffback

Yellow-rumped
Tinkerbird

Bronze Munia Green-backed
Camaroptera

Garden Bulbul

(d) Iterative approach predictor variables (final iteration: trained at 1/32◦ based on predictions form previous iterations to predict at 1/64◦)
1. MIRphasei 1. VPDmin 1. VPDmean 1. CCDmax 1. CCDphase1 1. NDVImin 2. CCDamp2 1. VPDphase2 1. LSTvar

2. CCDamp2 2. CCDamp3 2. NDVImin 2. MIRamp2 2. LSTphase3 2. CCDphase2
3. VPDphase3 3. CCDamp1 3. DEM 3. TAIRmean 3. MIRphase1 3. CCDamp3
4. CCDphase1 4. NDVIamp1 4. VPDmax 4. MIRphase2 4. NDVIphase1
5. TAIRphase2 5. NDVImean 5. MIRamp3 5. VPDmean 5. VPDvar
6. MIRvar 6. CCDphase3 6. MIRmean 6. TAIRphase2 6. TAIRphase1
7. CCDamp3 7. MIRamp2 7. LSTamp2 7. MIRmax 7. CCDamp1
8. LSTamp2 8. MIRamp1 8. NDVIamp3 8. TAIRmax 8. MIRamp3
9. LSTphase3 9. CCDphase2 9. TAIRamp3 9. NDVIvar

10. VPDphase1 10. VPDvar 10. MIRphase1
EPV 153.0 375.0 76.4 187.1 676.7 281.0 280.6 237.6 1445.0

(e) Point sampling approach predictor variables (predictors most frequently picked across 30 models per species trained by randomly sampling fifty
1/100◦ points within each 1/4◦ square to predict at 1/100◦)

1. NDVImin 1.
VPDphae3

1. NDVImin 1. CCDamp3 1. NDVIphase1 1. CCDvar 1. VPDamp2 1. DEM 1. MIRmean

2. VPDmin 2. VPDmin 2. TAIRphase2 2. VPDvar 2. CCDphase2 2. DEM 2. TAIRvar 2. CCDmax 2. CCDmean
3. TAIRphase2 3. TAIRvar 3. CCDmax 3. VPDphase2 3. VPDamp2 3. NDVIamp1 3. CCDamp2 3. CCDamp2 3. CCDphase1
4. CCDamp2 4.

CCDphase1
4. TAIRphase1 4. TAIRmean 4. VPDvar 4. VPDmin 4. NDVIamp1 4. TARIvar 4. CCDamp2

5. CCDamp3 5. CCDamp15. CCDphase2 5. CCDvar 5. TAIRphase1 5. NDVImin 5. TAIRphase3 5. VPDphase2 5. CCDphase3
6. CCDvar 6. VPDmean 6. CCDamp3 6. VPDamp2 6. CCDmax 6. VPDphase2 6. DEM 6. CCDphase3 6. CCDmax
7. DEM 7. VPDamp3 7. CCDamp1 7. VPDmin 7. NDVImin 7. VPDvar 7. LSTmax 7. MIRmean 7. TAIRphase1
8. CCDphase1 8. VPDvar 8. TAIRamp2 8. CCDphase3 8. TAIRmax 8. MIRamp1 8. VPDamp2 8. NDVImax 8. VPDphase2
9. CCDphase3 9.

TAIRamp3
9. VPDphase1 9. NDVImax 9. CCDvar 9. VPDphase3 9. NDVImin 9. VPDphase3 9. NDVIvar

10. MIRphase1 10.
CCDamp2

10. VPDphase2 10. DEM 10. DEM 10. NDVIphase2 10. VPDvar 10. VPDmin 10. MIRamp1

EPV 15.0 30.0 60.0 215.0 228.6 188.7 100.0 40.0 20.0

Variable names followTable A1. Events per variable (EPV) indicate the number of presences (or absences if these were less numerous) used to train models, divided by the number
of predictors selected.
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