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Abstract

For effective conservation planning, resource managers around the world require information on species distributions. Available
data, however, are often too coarse in spatial resolution to be of practical use. We describe four modelling techniques that harness
the information contained in coarse-scale occurrence records to predict species’ distributions at the finer resolutions relevant
to conservation officers in the field. The techniques are primarily statistical in nature, but can incorporate expert knowledge
on species’ habitat preferences. We highlight the conceptual strengths and weaknesses of each, and perform a preliminary
test of their comparative performance, using empirical data on the distribution of nine bird species in Uganda and satellite-
derived environmental indices. Two techniques, the point sampling approach and iterative approach, yield encouraging results.
Because the dominance of environmental factors controlling species’ distributions shifts with spatial scale, however, cross-scale
predictions remain a formidable challenge. Further testing and refinement of the techniques we present here are undoubtedly
necessary before they can be applied with any confidence.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Humanity’s growth and pursuit of ever higher living
_— , standards have environmental consequences atregional
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431, Tel.: +1 902 494 3910. mentation, the introduction of non-native species and
E-mail address: jana.mcpherson@dal.ca (J.M. McPherson). global climate change. To understand and mitigate such
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wide-ranging alterations to the world we live in and 1999; Lennon et al., 200@o more than 10,000 kfn
depend on, we must assess and predict their ecologicalin poorly surveyed parts of the world (e.g. Pan-
implications Root and Schneider, 1985 African databases on vertebrates and plahtsett

Our ability to understand how ecosystems func- et al., 2000; Balmford et al., 2001; Jetz and Rahbek,
tion and respond to change is complicated, however, 2002).
by issues of scale, both spatial and temporal, for at  Can such coarse data be used to map species
least three reasons. Firstly, observed patterns —the pri-distributions at the finer scales at which data are
mary cue in any analysis of cause and effect — are in needed for conservation planning? Species’ distribu-
some sense simply an artefact of the scale of analy- tions have been postulated to exhibit some degree of
sis. As scale changes, patterns charlgwif, 1992;  self-similarity across scales (e.gunin, 1998; Harte
Riitters et al., 1997; Thompson and McGarigal, 2002; et al., 1999. Yet it is thought that the dominant pro-
Hobbs, 2003; Vaughan and Ormerod, 2P@:condly,  cesses influencing species’ distributions shift from abi-
patterns observed at any one scale may be the resulfotic factors at coarse scales to biotic interactions at
of processes operating at another, or indeed a wholehigh spatial resolutionRoot, 1988; Cumming, 2002;

suite of scalesl(evin, 1992; Huston, 2002 Individ- Kadmon et al., 2008 This shift in factors determining
ual species, and therefore their communities, are often distributional patterns is likely to complicate cross-

influenced by factors at multiple scalelldcFaden scale predictions.
and Capen, 2002; Thompson and McGarigal, 2002;  Perhaps not surprisingly, therefore, attempts to
Sergio et al., 2008 and the scale of response can derive fine-grained distribution maps from coarse-
vary from organism to organisnbgGraaf etal., 1998;  grained occurrence records have been rare and results
Orrocketal., 2000; Mitchelletal., 2001; MacFadenand mixed (Lloyd and Palmer, 1998; Collingham et al.,
Capen, 2008 Thirdly, the scales at which ecologists, 2000; Barbosa et al., 2003; Al et al., 2005
climate modellers, politicians and wildlife managers The challenge lies in identifying environmental cor-
operate are traditionally quite dissimilar, hindering relates of species’ distributions at coarse scales that
effective interdisciplinary exchange and communica- also capture niche requirements at finer grain. Here
tion (Root and Schneider, 1995; Lindenmayer, 2000; we describe four alternative approaches to this prob-
Scott et al., 2002; Hobbs, 200X onsequently, meth-  |em. Making use of the exceptionally high resolution
ods that can bridge scale gaps and reliably translate of the Bird Arlas of Uganda (Carswell et al., 2005
findings at one scale to predictions at another would and satellite-derived environmental indices, we then
be highly desirableRoot and Schneider, 1995; Hobbs, test each approach’s ability to convert coarse occur-
2003. rence data (squares of 022®ngitude/latitude) into

A particular challenge, indeed a task long deemed high-resolution predictions (squares of 0.0bngi-
impossible, is the generation of fine-grained informa- tude/latitude). In the process, we also assess whether
tion from coarse-resolution mapsdrtley et al., 2004 the performance of empirical models can be improved

As a growing number of nations strive to document by the incorporation of expert knowledge on habitat
their natural heritage, atlases detailing the distributions gssociations.

of species across countries and continents are becom-

ing increasingly available. Yet the spatial resolution of

such atlases tends to be coarse relative to the scale. Materials and methods

at which conservation strategies must be implemented

(Kunin et al., 2000; Hartley et al., 20p4Nildlife man- Models to turn coarse data into fine-scale predic-
agement, forestry planning and environmental impact tions were constructed for nine bird species in Uganda.
assessments generally operate at scales of several hunfhe four approaches to cross-scale predictions are
dred hectaresBohning-Gaese, 1997; Ferrier et al., described in Sectio. Here, we provide details on
2002; Bustamante and Seoane, 2004 contrast, the bird distribution data and environmental predictors
taxonomic atlases typically map species distributions used by all four approaches. We also describe non-
at resolutions ranging from 100 Knin well-studied linear discriminant analysis, the statistical algorithm
regions (e.g. butterflies and birds in the UHill et al., used by three of the four approaches, as well as the
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process used to evaluate and gauge the performance ofoccupying 3—-12 out of a total of 333 QDS), three

models derived with each approach. had intermediate ranges (43—64 QDS) and three were
among the most widespread in Uganda (98-136 QDS).
2.1. Bird distribution data Habitat preferences of these species were extracted

from Sibley and Monroe (1990, 1993pformation on
Occurrence records for birds were taken from data each species’ altitudinal range was compiled frBim
compiled for theBird Atlas of Uganda (Carswell et al., Birds of Africa (Brown et al., 198), The Handbook of
2005. This atlas is uniqgue among bird atlas projects the Birds of the World (del Hoyo et al., 199PandThe
in southern and eastern Africa in that species occur- Field Guide to the Birds of East Africa (Stevenson and
rence was referenced to the precise point of observa-Fanshawe, 2001
tion (with decimal longitude and latitude) rather than

a geographic grid with resolutions of 0.25-05@as, 2.2. Environmental variables
for example, inA Bird Atlas of Kenya by Lewis and
Pomeroy, 1989The Atlas of Southern African Birds Environmental correlates were primarily derived

by Harrison et al., 1997andThe Atlas of the Birds of from satellite images collected twice daily over a 5-year
Sul do Save, Southern Mozambique by Parker, 1998 period (1992-1996) by the U.S. National Oceanic and
It thus provides a unique opportunity to test high reso- Atmospheric Administration’s Advanced High Resolu-
lution predictions. tion Radiometer satellite series. Environmental infor-
To simulate the low resolution of avian distribu- mation obtained from these images included a middle
tion records elsewhere, the Ugandan data were coars-infrared signal, indices of land surface temperature, air
ened to 0.25 (1/4°) and intermediate resolutions of temperature, the vapour pressure deficit and the nor-
1/8, 1/1e, 1/32, 1/64 and 1/100. At each resolu- malised difference vegetation index (NDVI). A further
tion, a species was designated as present in any gridindex, cold cloud duration, was derived from 10 years
square containing at least one point locality observa- (1989-1998) of European Meteosat imagery. For more
tions of that species. Because sampling for Bie/ information on these indices and their procurement, see
Atlas of Uganda was not geographically systematic Table Alin Appendix A All imagery was compos-
(Tushabe et al., 2000, 20Q1lhowever, grid squares ited into cloud-free, monthly images and re-sampled
lacking observations of the species were not automat- from its original spatial resolution of 1 kfrto resolu-
ically assumed to represent absence. Only if a mini- tions of 1/4, 1/8, 1/16, 1/32°, 1/64 and 1/100. For
mum number of observations of other species had beeneach environmental index, we used temporal Fourier
logged within the square (e.g. 75+ observations &t 1/4 analysis, a datareduction technique ideal for summaris-
resolution), was the absence of a record interpreted ing seasonal variable€hatfield, 1996; Rogers et al.,
as true absence of the species. Squares of ambiguoud.996, to extract the overall mean, minimum, maxi-
status were excluded from both model calibration and mum and variance, plus the amplitude (strength) and
evaluation. phase (timing) of annual, biannual and triannual cycles.
Given the patchy nature of point locality observa- Furthermore, altitude, derived from the U.S. Geolog-
tionsin Uganda, aggregation of data from fine to coarse ical Survey’s (USGS) global digital elevation model
resolution led to coarse data with a level of observer (http://edcdaac.usgs.gov/gtopo30/gtopo30.htrmias
effort comparable to other bird atlases in the region. included among the explanatory variables, yielding
Ugandan 1/4 squares with data on average drew on a total of 61 candidate predictors (s€able Alin
observations from 10.24 point localities. For compari- Appendix A).
son, the average number of records pef E4uare in Models incorporating expert knowledge on species’
southern Mozambique was5.11,in Zimbabwe 21.22,in habitat preferences also used the USGS Land Cover
South Africa, Lesotho and Swaziland 56.82afrison System map (Version Attp://edcdaac.usgs.gov/glcc/
etal., 1997; Parker, 1999 tabgoodeaf.html), re-sampled to 0.01by nearest
Nine bird species were chosen for analysis, based onneighbour analysis (using IDRISI). USGS land cover
the number of quarter-degree squares (QDS) they occu-categories were paired with species’ habitat prefer-
pied (Table ). Three species had very narrow ranges ences as shown ifable 2
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Table 1
The nine bird species whose recorded distributions in Uganda were used to test modelling approaches that rely on coarse-resolution data t
derive fine-resolution predictions of species’ occurrence

Species Local range Preferred habitat Observed habitat

Nahan’s FrancolinKzernistis 3 Humid forest (1000-1400 m) Evergreen broadleaf fosestnna, dryland cropland
nahani, Phasanidae) and pasture (1049-1283 m)

Fox's Weaver Ploceus spekeoides, 6 Swamps (no altitude given)  Savanna, dryland cropland and pasture (1046-1219 m)
Passeridae)

Crested Guineafowl{uttera 12 Humid forest, edge (0-2200m) Evergreen broadleaf fav@sinna, dryland cropland
pucherani, Numididae) and pasture, shrubland, cropland-woodland mosaic

(533-1524m)

Lesser Honeyguiddidicator 43 Riparian woodland, savanna Savanna, dryland cropland and pasture, evergreen

minor, Indicatridae) (0-3000 m) broadleaf forest, cropland-woodland mosaic, shrubland,

grassland, water bodiesharren or sparsely vegetated
(719-2433 m)

Northern Puffbackryoscopus 54 Woods (900-2850 m) Savanw@ayland cropland and pasture, grassland,
gambensis, Corvidae) cropland-woodland mosaic, evergreen broadleaf forest,
shrublandurban/built-up, water bodies (636—2321 m)
Yellow-rumped Tinkerbird 64 Forest, edge, savanna, scrub Dryland cropland and pasture, cropland-woodland
(Pogoniulus bilineatus, (0-3000 m) mosaic, savanna, evergreen broadleaf forest, shrubland,
Lybiidae) grasslandwater bodies, deciduous broadleaf forest,

barren or sparsely vegetated, mixed foresturban/built
up (533-2809 m)
Bronze Munia §permestes 98 Savanna, scrub, farmland Dryland cropland and pasture, savanna,
cucullatus, Passeridae) (0—2200m) cropland-woodland mosaieyergreen broadleaf forest,
water bodies, barren or sparsely vegetated, grassland,
shrublandurban/built-up, deciduous broadleaf forest
(494-2433m)

Green-backed Camaroptera 110 Humid forest undergrowth, Savannadryland cropland and pasture,
(Camaroptera brachyura, thickets (0-2200 m) cropland-woodland mosai@ater bodies, evergreen
Priniidae) broadleaf forestgrassland, shrublandparren or

sparsely vegetated, deciduous broadleaf forest, mixed
forest,urban/built-up (533—-2228 m)

Garden Bulbul Pycnonotus barba- 136 Woods, forest, secondary Savannagryland cropland and pasture, water bodies,
tus, Pycnonoidae) growth, towns, usually near  cropland-woodland mosaic, shrubland, evergreen
water (0—3000 m) broadleaf forestharren or sparsely vegetated, mixed

forest, deciduous braodleaf forest (427 - 4536 m)

Species were selected based on their local range size (here the number of quarter-degree squares occupied by the species in Uganda), so a:
include species of low, intermediate and high prevalence in Uganda. Also indicated are each species’ published habitat preferences, as well a
the USGS land cover classes and altitudes observed at point locality occurrence records. Land cover classes are listed in order of the frequenc
with which they corresponded to species’ point localities. Italics indicate observed land cover types and altitudes that fell outside the species’
published preferences.

2.3. Statistical algorithm structure of predictor variables for each of the response
variable’s states, here species presence and absence.

To distinguish the environmental characteristics The distribution of predictor variables is assumed
associated with species’ presence and species’ absencdp be normal, but their covariance need not be the
several of the modelling approaches described below same for all states in non-linear discriminant anal-
used non-linear discriminant analysis. Alternative ysis Rogers et al.,, 1996 The posterior probability
algorithms, such as logistic regression, would have of any data point belonging to one response state or
been equally applicable butwere nottested in this study. another is then calculated based on its position-in

In discriminant analysis, training data serve to deter- dimensional space relative to each state’s multivariate
mine the multivariate mean and variance—covariance mean, where distance between sample point and mean
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Table 2
Habitat types mentioned [Sibley and Monroe (1990, 1998} appropriate for the nine species analysed, and the USGS land cover types thought
to represent these habitats in Uganda

Published habitat Corresponding USGS landcover types that exist in Uganda

Humid forest or humid forest undergrowth Deciduous broadleaf forest, evergreen broadleaf forest, mixed forest, wooded wetland,
cropland-woodland mosaic

Forest or woods Deciduous broadleaf forest, evergreen broadleaf forest, mixed forest, wooded wetland,
cropland-woodland mosaic, shrubland, savanna

Riparian woodlands Deciduous broadleaf forest, evergreen broadleaf forest, mixed forest, wooded wetlands,
cropland-woodland mosaic, shrubland, water bodies

Secondary growth Deciduous broadleaf forest, evergreen broadleaf forest, mixed forest, wooded wetlands,
cropland-woodland mosaic, shrubland

Thicket Deciduous broadleaf forest, evergreen broadleaf forest, mixed forest, cropland-woodland
mosaic, shrubland, savanna

Scrub Shrubland, savanna

Savanna Savanna, shrubland, grassland, cropland-grassland mosaic, cropland-woodland mosaic,
dryland cropland and pasture

Edge Crop-land-woodland mosaic, shrubland, mixed shrubland-grassland

Farmland Dryland cropland and pasture, cropland-grassland mosaic, cropland-woodland mosaic,
grassland, barren or sparsely vegetated

Swamp Water bodies, wooded wetland

Near water Water bodies

Town Urban/built-up

is measured as Mahalanobis distanGzefen, 1978; were of finer spatial resolution and therefore novel to
Rogers et al., 1996 For presence—absence data, dis- these models.
criminant analysis predicts a species’ probability of Accuracy was measured as the area under the curve
occurrence. (AUC) of receiver operating characteristics (ROC)
We implemented non-linear discriminantanalysisin plots, here calculated non-parametrically using the
custom-written programs (QuickBasic). Predictor vari- Wilcoxon statistic Hanley and McNeil, 1982; Pearce
ables were selected in forward stepwise fashion basedand Ferrier, 2000 AUC facilitates meaningful compar-
on their ability to increase kappa, a chance-corrected isons between models of species with different range
measure of model fittohen, 196) Stepwise variable  sizes, because itis largely insensitive to species’ preva-
selection, although often criticised, was used becauselence McPhersonetal., 2004t can, however, become
(1) its use is widespread and thus represents a realityerratic at extremely low or high prevalence, so the pro-
in distribution modelling and (2) we were not con- portion of presence samplesin test data was constrained
cerned with an ecological interpretation of the models. to fall within 0.35-0.65. Where necessary, this was
Our models guarded against unrealistic outcomes by achieved by sub-sampling records in the more abun-
restricting predictions to sites environmentally simi- dant category, either presence or absence.
lar (as indicated by the Mahalanobis distance) to those  Following Swets (1988) we considered model

included in training data. accuracy good if 0.9<AU& 1.0, reasonable if
0.7<AUC<0.9,andpoorif0.5<AUG 0.7. AsAUC
2.4. Model evaluation values of 0.5 correspond to random performance, this

cut-off served as a worst-case null model for high-
Models were evaluated based on how well they pre- resolution predictions.
dicted test data, i.e. data not used in model training. = Comparisons of accuracy achieved by the dif-
In models trained at coarse resolution, test and train- ferent modelling approaches were undertaken non-
ing data were not strictly independent, because both parametrically with Wilcoxon’ signed rank tests for
datasets derived from the point locality observations matched pairs or Friedman’s test for related samples
recorded in theBird Atlas of Uganda. Yet test data ~ (McClave and Dietrich, 1994
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2.5. Gauging expectations: fine-grained models remotely sensed environmental data. Any grid square
in the region’s biodiversity atlases, therefore, contains
Models trained at coarse resolution cannot be many component ‘pixels’ (picture elements), each of
expected to predict fine-grained patterns any better thanwhich has a unique set of environmental attributes. To
models trained directly at high resolution. To gauge train distribution models at the atlas’ original resolu-
expectations for cross-scale models, we therefore cal-tion (e.g. 0.25), pixel-level attributes within each atlas
ibrated one model per species with fine-grained data. square must be amalgamated, for example, by averag-
Thesefine models were trained at a resolution of jng. Model algorithms, such as discriminant analysis
1/64 using non-linear discriminant analysis. Two- or |ogistic regression, can then identify the statistical
thirds of the 1/63 data were used for calibration, the re|ati0n5hip between species occurrence and the corre-
remainder for model evaluation. The AUC achieved sponding averaged environmental conditions.
served as an ideal-case scenario, indicating the maxi- ~ The direct approach simply projects the statisti-
mum accuracy expected from models trained at coarseca| relationship thus identified onto individual pixels,
resolution. applying parameters calibrated at coarse grain to fine-
grained environmental attributesig. 1). The method
is intuitive and has previously been used by other
authors Collingham et al., 2000; Barbosa et al., 2003;
3.1. Direct approach Aralijo et al., 2003
The direct approach was implemented here using
Most avian distribution data for eastern and southern non-linear discriminant analysis, a training resolution
Africa have a coarser spatial resolution than available (atlas square size) of 174nd a pixel size for predic-

3. Four approaches to cross-scale predictions

@ Pixel amalgamation to calculate PIXEL RESOLUTION
average environmental conditions Environmental attributes
for each atlas square

ATLAS RESOLUTION
Observed distribution Average environmental
[J absent M present conditions

Application of parameter values to
pixel-level environmental attributes,
yielding fine-scaled predictions

AR

o
N

Predicted
probability of
% occurrence
@ Model parameterisation based on o
the statistical relationship between
species’ occurrence and average I
environmental conditions gt high

Fig. 1. The direct approach to high resolution predicticfigp 1 coarsens fine-grained environmental variables to the spatial resolution of
available species’ distribution record$ep 2 establishes the statistical relationship between these coarse environmental conditions and the
species’ presence and abserfrep 3 utilises parameter values gained in step 2 in conjunction with the original fine-grained environmental
variables to produce high-resolution predictions of the species’ distribution.
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tions of 1/64. Training sample prevalence (the propor- The iterative approach was implemented with a
tion of presence records in training data) was coerced to starting resolution of 1/4 cycling through four rounds
0.5, because this appears to maximise algorithmic per-to predictions at 1/64 Non-linear discriminant anal-
formance in discriminant analysidMtPherson et al.,  ysis served as the model algorithm. At all resolutions,
2004). To achieve 0.5 prevalence, the more abundant training sample prevalence was coerced to 0.5, via
category (e.g. absence) was sub-sampled randomly tosub-sampling. As a safeguard against error propaga-
select only as many localities as were available in the tion from one iteration to the next, presence localities
less abundant category (e.g. presence). used to calibrate the models in iterations 2—4 had to fall
Unfortunately, the direct approach suffers concep- within atlas squares known to harbour the species at
tual drawbacks. The variability among pixels’ envi- the original (1/4) resolution. No analogous constraint
ronmental attributes within a square may exceed the was placed on absence localities, since fine-resolution
variability among squares’ average conditions. Further- areas of absence can legitimately occur within coarse-
more, the attributes of any one pixel within an atlas resolution squares of presence. Predictions at each res-
square are unlikely to match the square’s average for olution were evaluated with data of equal resolution.
each environmental variabléd¢ston, 2002 Model They were also evaluated with data at the original,
parameters thus risk being applied to environmental coarse resolution (174 to examine the adequacy of
conditions (variable values and combinations thereof), such a test, which might be performed when no fine-
not encountered during model training. Under such cir- resolution data are available (hereafter ‘coarse-grain
cumstances, predictions may be unrealistic or at leasttest’).
unreliable. Iterative models were built both purely empirically
The following three alternative approaches to fine- (pure models) and under inclusion of expert knowl-
grained predictions attempt to circumvent this problem. edge on habitat associatiogbirat models). Inhabi-
tat models, presence squares selected to re-calibrate
3.2. Iterative approach models at finer resolutions had to contain an appropri-
ate land cover category. An additional requirement for
The iterative approach is closely related to the direct appropriate altitude did not yield significantly different
approach, but attempts to minimise the discrepancy results, so is not discussed further.
between the environmental values encountered during
calibration and prediction. It moves from coarse (atlas 3.3. Point sampling approach
square) to fine (pixel) resolution incrementally, dou-
bling the spatial resolution of predictions at each step.  The point sampling approach avoids the amalga-
Models are first calibrated at the original resolution of mation of pixel-level attributes. It randomly chooses,
atlas squares (e.g. TMIfthe model performs satisfac-  within each atlas square, a fixed number of environ-
torily at that resolution, its parameters are used to make mental pixels to calibrate models at high resolution
predictions at the next finer resolution (1)8These directly (Fig. 3). Lloyd and Palmer (1998¢mployed
predictions are classified as predictions of presence orthis approach in a study of South African bulbuls, albeit
absence using a predicted probability of occurrence of sampling only a single (the central) pixel per atlas
0.5 as the threshold. The outcome serves as trainingsquare. Although intuitive, the approach makes the
data for a new model, re-calibrated at double the start- clearly unrealistic assumption that all component pix-
ing resolution (i.e. at 1/§, and the process begins anew els of atlas squares known to harbour a species embody
(Fig. 2. suitable environmental conditions, and those of squares
The underlying rationale is that the average condi- not housing the species unsuitable environmental con-
tion in a group of pixels is closer in value to the average ditions.
condition in half the group than to the attribute of In preliminary analyses the approach seemed insen-
any individual group member. The approach assumes, sitive to its starting resolution (1721/4° or 1/8) and
therefore, that models calibrated at coarse grain makethe number of pixels sampled per atlas square (10, 50,
decent predictions at finer grain if the difference 100). Analyses reported here used a starting resolution
between resolutions is not too large. of 1/4° and pixel size of 1/100 Again, non-linear dis-
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bserved distribution at coarse resolution, Model parameterisation
depicting points sampled randomly within Discriminant analysis or an alternative
each square [©] point sample of absence algorithm uses environmental attributes

& point sample of presence of point samples to distinguish presence
from absence.

discriminant axis

environmental variable

absenge
environmental variable 1

G Predicted probability of occurrence
at fine resolution

W 0.76-1.00 0.26 - 0.49
M 050 075 : .D 0.00-0.25

@Detail of a coarse-resolution square, u
showing its point samples and

underlying pixels. T mEEE|

|
1T
]

im
| N NN
LT

INEEN

I
]

11111

Fig. 3. The point sampling approach to high resolution predictifrag 1 identifies the species’ distribution at coarse resolution (black, presence;
white, absence) and picks a fixed number of point localities randomly within each s§u@r2.matches each point locality to an underlying
fine-resolution pixel and records its environmental attribufes: 3 uses these environmental attributes to calibrate model paranmzterd.

applies the calibrated parameters to fine-resolution environmental data to predict the species probability of occurrence at a fine spatial scale.

criminant analysis served as the model algorithm. In 3.4. Clustering approach

pure models, 50 pixels per square were sampled at ran-

dom. Inhabitat models, sampled pixels had to contain The clustering approach is different conceptually in

a land cover category judged suitable for the species. that it uses information only from atlas squares known
Given the randomised nature of sampling, 30 tri- toharbourthe species. Itassumes (1) thateach occupied

als were run per species. For comparison with other square must contain some favourable habitat and (2)

approaches, both model accuracy and predicted proba-that favourable habitat is more homogenous from one

bility of occurrence maps were averaged across the 30 occupied square to the next than unfavourable habitat.

trials per species. Accordingly, component pixels of atlas squares har-

Fig. 2. Iterative approach to high resolution predictidnsation 1 begins by calibrating model parameters based on coarse-resolution records,

e.g. 1/4, of both the species’ observed distribution and environmental variables. If the model yields satisfactory predictions at coarse resolution,
its parameters are applied to environmental data at double the resolution,q,éodfBier-resolution predictions of the species’ probability of
occurrence. Among these predictioirgration 2 selects areas of predicted presence and absence for model re-calibration, taking into account
sampling prevalence and correspondence with coarse resolution data. Model parameters are then calibrated anew, using predicted occurrence
and environmental data at a resolution of’148ext, the new parameters are applied to environmental data of even higher resolution, &,g. 1/16

for predictions of the species’ probability of occurrence at ever finer resoldtioation 3 and any subsequent iterations follow the established

pattern: selecting sites for re-calibration among predictions of the previous round; renewed parameterisation of the model using environmental
data of equal resolution as predictions; application of parameters to finer environmental data.
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Fig. 4. The clustering approach to high resolution predictiSrep. 1 identifies the areas of species presence at coarse resolution, squares A—H.
Step 2 determines the environmental attributes of the finer-resolution pixels constituting the coarse presenceSsguaresoups the finer

resolution pixels into clusters based on their environmental attributes, and then examines cluster membership. Ideally, one cluster contains ¢

number of pixels from each of the original coarse presence squasegt assumes this cluster to represent habitat suitable to the species, and
maps it back into geographic space as a prediction of species presence at fine resolution.

bouring the species are jointly subjected to cluster anal- eralist, (2) the study area is large enough that habitat
ysis. Resulting clusters whose membership includes preferences exhibit local adaptations, or (3) predictors
pixels from all or most of the original squares, are poorly capture the species’true requirements (e.g. open
then mapped back into geographic space as sites ofspace regardless of land cover type).
species presenceif). 4). To predict species occurrence Three methodologicalimpediments, however, affect
beyond the boundaries of squares used in analysis,the approach. First, as in all cluster analyses, it is dif-
Mahalanobis distances — based on the chosen cluster'dicult to determine objectively how many clusters to
multivariate mean and covariance structure — can be divide data into. Second, misleading or inconclusive
calculated to identify environmentally similar locations cluster arrangements could result if irrelevant environ-
elsewhereGreen, 1978 mental attributes mask differences in indices impor-
The approach’s assumptions seem reasonable.tant to the species. Third, current computing capacity
Unless atlas records derive from sightings of purely imposes severe limitations on practicability: due to the
transientindividuals, atlas squares harbouring a specieslarge sample sizes involved, cluster algorithms in com-
should contain suitable habitat. Habitat favoured by a mercially available software proved unable to cope
species should also be less variable than the generalwith all but the three most narrowly-ranging species
environment, unless (1) the species is an extreme gen-analysed here.
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For these three species, the approach was imple-els (Wilcoxon's Z=-0.77, p=0.44, n=9; Fig. 6),
mented in S-Plus, usindara, a medoid-based cluster-  even though the choice of predictor variables showed
ing algorithm designed for large dataseliss{ghtful, little overlap (i.e. the predictor variables chosen by
200)). Several cluster configurations were tested per direct models were generally different from those cho-
species, and average silhouette width, an index of clus- sen infine models; se€Table A2 in Appendix A).
ter separationlfisightful, 200), was used to identify ~ Only one narrow-ranging species, however, was pre-
the best among them. Fpiire models, all component  dicted highly accurately. Predictions were poor for
pixels of atlas squares harbouring the species were usedall other species, and grew poorer as species’ range
in clustering. Forhabitat models, only pixels of suit-  size increased (Spearman rank correlatige:—0.80,
able land cover were submitted. p<0.01,n=9; Table 3.

The approach frequently encountered environmen-
tal conditions distinct from those experienced during

4. Results calibration, where no predictions could be made. It also
tended towards ambiguous predictions (predicted prob-
4.1. Gauging expectations: fine-grained models ability of occurrencer 0.5) and produced distribution

maps of speckled appearanéég( 5c).

Models calibrated at high resolution (1/§4pre-
dicted test data successfully (AU€0.7) in only the 4.3. Iterative approach (pure models)
three most narrow-ranging speciéalle 3. For all
remaining speciesine models performed no better High-resolution predictions of iterative models
than random (AUGr 0.5), with poor predictions for ~ were comparable in overall accuracy fiae mod-
both presence and absence (e.g. compage5a and els (Wilcoxon's Z=-1.60, p=0.11, n=9; Fig. 6),
b). Expectations for models calibrated at coarse reso- again despite little overlap in predictoraple A2

lution, therefore, were low for most species. Appendix A). The approach produced useful models
for two narrow-ranging speciesdble 3. The correla-
4.2. Direct approach tion between range size and accuracy was, however, not

significant ¢s=—0.3,p=0.43,n=9) unless the poor
The predictive accuracy of direct approach mod- model for Nahan’s Francolin (the most narrow-ranging
els did not differ significantly from that gfre mod- species) was excludedsE —0.86,p <0.01,n=8).

Table 3
A comparison of the predictive accuracy of models calibrated at fine grain and those calibrated at coarse grain using the direct, point sampling
and the iterative approach

Species (range size) Resolution of calibration data

1/64 1/&

Fine Direct Point sampling Iterative approach

Pure Pure Pure Habitat Pure Habitat
Nahan'’s Francolin (3) 1.00 0.65 0.94 0.98 0.46 0.50
Fox’s Weaver (6) 0.75 1.00 0.98 0.59 0.94 0.92
Crested Guineafowl (12) 0.72 0.69 0.83 0.83 0.84 0.90
Lesser Honeyguide (43) 0.42 0.68 0.74 0.73 0.59 0.64
Northern Puffback (54) 0.45 0.58 0.63 0.66 0.68 0.66
Yellow-rumped Tinkerbird (64) 0.57 0.54 0.66 0.67 0.67 0.68
Bronze Munia (98) 0.53 0.54 0.57 0.58 0.59 0.58
Green-backed Camaroptera (110) 0.50 0.59 0.55 0.54 0.55 0.59
Garden Bulbul (136) 0.47 0.49 0.52 0.52 0.49 0.49

Accuracy was measured as the area under the curve (AUC). Models were constructed either purely empinigatly (nder inclusion of
expert knowledge on habitat associatiohsbfrar). Good models (AUG 0.7, bolded) were achieved only rarely.
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Crested Guineafowl Yellow-rumped Tinkerbird Green-backed Camaroptera

(g) lobserved distributions y

|

| (d) iterative |

e. point sampling

Fig. 5. Comparative performance of different modelling approaches, displaying the observed distribution of three spetciesgutyLquares)

and 1/100 (black dots) in (a), alongside country boundaries (black lines) and water bodies (grey). High-resolution predictions are shown for
fine models (b), the direct approach (c), iterative approach (d) and point sampling (e). Predicted probabilities of occurrence range from 0 (red)
through 0.5 (yellow) to 1 (green). Areas where models made no predictions, because environmental conditions differed from those encounterec

during calibration, are shown in grey, water in blue.
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1.0 - —— ingly, achieved higher accuracy overall (Wilcoxon’'s
L e Z=-2.19,p=0.03,n=9, Fig. 6). Useful predictions
0.9 - were achieved for four specie$aple 3. Accuracy,
L - however, declined sharply with increasing range size
0.8 - (rs=—0.97p<0.01n=9). Predicted distributions fol-
L lowed occurrence records tightly in narrow-ranging
Q o7k species, but for commoner species the approach tended
< | to predict presence throughout the regibig( 5e).
06 L Q The approach was computationally slow, due to the
| need for several replications per species, and not sig-
Y nificantly better than the direct or iterative approach
' e (Friedman’sy?=2.00,p=0.37,n=9).

null direct iterative point fine 4.5. Clustering approach (pure models)

Fig. 6. Comparative accuracy of models trained at coarse resolution ~ The clustering approach, implemented for only the

via the direct, iterative or point sampling approaches and models three most narrow-ranging species, proved impracti-

trained at fine resolutlon.A_ccuracy was measured as the_ area gndercable' In each species, the best cluster Conﬁguration

ROC curves (AUC). As apoint of reference, an AUC of 0.5, indicative . . . .

of random null models, is shown on the left. Box-plots indicate the contained two clusters, of which one included plxels

median (thick line), inter-quartile range (box) and outliers (filed ~from a majority of the original atlas squares. In all three

circles) of AUC values achieved for nine species. species, however, this cluster proved ill-defined with
regards to the study region. Based on Mahalanobis dis-

The approach was able to make predictions for most tances, most 1/10Qixels in Uganda were as similar

of the study region. Predicted distributions appeared to the cluster’s multivariate mean as the original clus-

more coherent than in the direct approach and suf- ter members defining that mean. Essentially, therefore,

fered less ambiguityHig. 5d). Their general shape  the clustering approach predicted each of the narrow-

was determined early during the iterative process, with ranging species to be omnipresent.

only small refinements as spatial resolution increased

(e.g.Fig. 7). As a result, changes in accuracy Were 4.6. Inclusion of expert knowledge

also limited and there was no significant relationship

between the spatial resolution of predictions and the  The incorporation of expert knowledge on species—

value of AUC calculated for equal-resolution test data habitat associations had little impact on model results.

(Friedman's tGSUXZ_: 5.83,p=0.12, d.f.=3,n=9). In the iterative approachyure and habitat models
Predictions of the iterative approach were hence no were similar both visually and statistically (Wilcoxon’s
more accurate at 1/2@®r 1/32 than at 1/64. 7Z=-1.01,p=0.31,n=9; Table 3.

Coarse-grain tests proved unreliable formodel eval-  The same was true for the point sampling approach
uation. Although AUC values achieved in coarse-grain (Wilcoxon’s Z=-0.18, p=0.86, n=9), although
tests were significantly correlated with AUC values results for Fox’s Weaver stood out. The approach’s

obtained for fine resolution test datg€ 0.50,, <0.01, habitat model for this species performed poorly, unlike

n=36), coarse-grain accuracy was only a weak predic- its pure counterpart Table 3. None of the species’

tor of accuracy at fine resolution®(=0.29,p<0.01, observed point records coincided with land cover cate-

n=36). gories deemed suitable by the published literature (see
Table 7. Some suitable pixels occurred nearby and fell

4.4. Point sampling approach (pure models) within the species’ 1/atlas squares. Because suitable

pixels were few in number, however, they restricted
Point sampling models showed only limited over- total sample size in théabitat model. The resulting
lap with fine models in their selection of pre- predicted distribution was extremely restricted, omit-
dictors (Table A2 Appendix A), yet, astonish-  ting a number of known occurrences.
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model training sites model outputs at training model outputs at finer

iteration resolution resolution

1.
1/4° to 1/8°

2.
1/8° to 1/16°

Fig. 7. Ilterative predictions of the distribution of Lesser Honeyguide in Uganda. For each iteration (1-4), the left panel indicates sites used for
model parameterisation, with green representing presence and red absence. The central panel shows model predictions at the spatial resolutit
of calibration sites. Predictions at double the resolution appear in the panel on the right. Species’ predicted probability of occurrenceranges fro

0 (red) through 0.5 (yellow) to 1 (green). No predictions were made (grey) where environmental conditions differed from those encountered
at calibration sites. Black dots indicate the species’ observed distribution. Water bodies are shown in blue, national borders in white. Model
performance is indicated in the bottom left corner of each panel as training accuracy (central panels) or test accuracy (right panels).
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In the clustering approach, clusters remained ill- species. This raises questions over the quality of train-
defined even when only pixels of the species’ preferred ing data used.
land cover category were taken into consideration. Due to the small number of resident ornithologists,
even coverage of the country could not be ensured
during data collection for th&ird Atlas of Uganda

5. Discussion (Tushabe et al., 2000, 20pIMany areas, therefore,
received little or no sampling effort. Consequently,
5.1. Previous work on cross-scale predictions records of each species’ occurrence may be geograph-

ically incomplete, and may not adequately reflect the

Models calibrated at coarse resolution were mostly full range of habitats used. Furthermore, incomplete
unsuccessful at predicting the fine-grained distribu- coverage means that the absence of a record does not
tions of Ugandan bird species. Prima facie, this sug- reliably indicate absence of the species. Although both
gests that the four approaches presented are ineffectivetraining and test data attempted to guard against incor-
tools for cross-scale predictions. rect absences, the safeguard used (a threshold number

Previous studies provide a mixed opinion on of observations per grid square) was far from fail-
this. Collingham et al. (2000)applying the direct  safe. If observers preferentially recorded specific taxa,
approach to three non-indigenous plant species in Greatsuch as rare or conspicuous species, while ignoring
Britain, found that models parameterised at a reso- others that were present but of less interest, improper
lution of 10kmx 10 km yielded poor predictions at absences may nonetheless have been included in the
2km x 2 km. Using a comparable approach on 12 sim- analyses.
ulated species’ distributions, ecologists at tHgZ Biased presence records and incorrect absence data
Centre for Environmental Research in Leipzig, Ger- could have led to poor model parameterisation. Incor-
many, found that models trained at landscape-level pre- rect absence data also call into question the results
dicted patch-level patterns no better than null models on model accuracy: if test data are riddled with mis-
(Carsten Dormann, personal communication, 21 Jan- takes, it becomes difficult to assess what represents
uary 2004). genuine flaws in model predictions versus sampling

In contrast,Barbosa et al. (2003who used the inaccuracies. Because the likelihood of false absences
direct approach to predict the fine-grained distribu- diminishes as data resolution coarsebdwards et al.,
tion of otters in Spain and Portugal, judged their 1996, models trained at fine resolution may have been
results satisfactory; assessment of accuracy was, how-worse affected. This might explain the tendency of
ever, qualitative only. A clearer story of success was cross-scale models to outperfofime models.
reported byLloyd and Palmer (1998)their model Higher accuracy for narrow-ranging speciegiirz
of a South African bulbul, calibrated via point sam- models, and in the direct, iterative and point sampling
pling at 1/2, replicated the species’ distribution well approach, could reflect better than average data qual-
at 1/15. Most recentlyAraljo et al. (2005) evaluat- ity due to preferential recording. Particularly Fox’s
ing the direct approach for 81 bird species in Britain, Weaver, an endemic, and Nahan’s Francolin, consid-
found that, on average, models parameterised at a resered endangeredCN, 2004, may have attracted
olution of 50kmx 50km predicted distributions at special attention. In addition, small test sample sizes
10kmx 10 km satisfactorily, but noted that accuracy (due to small range sizes) could have inflated AUC val-

varied widely from species to species. ues for these species. Small test sample size is known
to increase the standard error of AUGICPherson
5.2. The influence of data quality et al., 2004.

Better accuracy for narrow-ranging species, how-
While cross-scale models for Ugandan bird species ever, could also have ecological reasons. The environ-
performed poorly overall, three of the four approaches mental niche of such species may be more concise,
were comparable in accuracy to models calibrated and hence more predictable, than that of wide-roaming
at fine resolutionFine models performed no better species such as the Garden Bulbul. A narrow niche
than random for all but the three most narrow-ranging width is thought to facilitate more accurate models
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(Mitchell et al., 2001; Hepinstall et al., 2002; Kadmon
etal., 2003.

5.3. The choice of predictors

J.M. McPherson et al. / Ecological Modelling 192 (2006) 499-522

The success of climatic indices in modelling distri-
butions at high resolution does not negate the impor-
tance of biotic interactions and stochastic events at fine
spatial grains. The dominance of processes shaping
species’ distributions may shift only gradually over a

Although cross-scale approaches performed no large range of scaledértley et al., 2004 Further-

worse tharyine models overall, they each had draw-

more, these processes likely are hierarchically struc-

backs, and only one — the point sampling approach — tured, such that factors influential at coarse scales shape
yielded reasonable accuracy for all three species for the processes operating at fine scal&/biftaker et al.,

which fine models indicated the potential.

The unsatisfactory performance of cross-scale mod-

els could stem, in part, from the use of predictor vari-

2001). Hierarchical control and a gradual succession of
controlling processes would both grant some — albeit
diminished — predictive power to abiotic variables at

ables adequate only for the mapping of coarse but not relatively fine spatial grains.

fine patterns in a species’ distribution. The satellite-
derived predictors used in this study relate mostly
to climatic conditions, although the NDVI serves as
a surrogate for net primary productivitiiéy, 2000;
Kerr and Ostrovsky, 200&nd the middle infrared sig-
nal can aid in the discrimination of vegetation types
(Hay, 2000; Nagendra, 20R1Abiotic factors such
as climate probably determine a species’ distribution
at coarse resolution. At finer scales, however, biotic
attributes become important, including the availabil-
ity of foraging resources and nest sites, and inter-
actions with predators, competitors, and other indi-
viduals of the same specieRdot, 1988; Cumming,
2002; Kadmon et al., 2003 Furthermore, the pat-

tern of absence and presence within the broad bound-
aries of a species’ range are also affected by dispersal

In our analyses, predictors chosen fine models
were dissimilar from those chosen by models trained
at coarse grain. Yet there was no obvious trend away
from purely climatic variables, such as temperature, to
more biotic indices, such as NDVI. The limited overlap
in predictors may in part be the consequence of inad-
equate training data (poor model parameterisation), or
may reflect collinearity among some predictors.

Overall, it is doubtful that inappropriate predictors
were responsible for the poor performance of cross-
scale models in Uganda. Inadequate training data are
more likely to be at fault.

5.4. The role of expert knowledge

Models were not improved by inclusion of expert

ability and stochastic events that shape the species’knowledge on species habitat associations. Expert

metapopulation dynamicsP(lliam, 2000; Ferrier
et al.,, 2002; Huston, 2002 These processes are
unlikely to be captured by remotely-sensed environ-
mental indices.

One might therefore expect models relying on
satellite-derived predictors to perform more poorly at

knowledge can be incorporated into empirical models
in many different waysHearce et al., 2001for exam-

ple, to screen occurrence records for anomalous obser-
vations Eerrier etal., 2002; Lehmann et al., 200@r-
mulate habitat suitability indiceB@stamante, 1997;
Ferrier et al., 200R select biologically relevant pre-

fine than coarse resolution. Yet remotely sensed indicesdictors Pausas et al., 1995; Puttock et al., 1996; Hill

such as NDVI have contributed to the accurate pre-
diction of species’ distributions at resolutions as fine
as 1kn? (e.g. Osborne et al., 2001; Suarez-Seoane
etal., 2002. IndeedSeoane etal. (200)sted whether
vegetation-related variables predicted bird distribu-
tions better than climatic variables at fine spatial resolu-
tion, but found no significant difference. Furthermore,
Lloyd and Palmer’s (1998&uccessful cross-scale pre-
dictions for the Red-eyed Bulbul in South Africa relied
on variables of similar nature as used here (climatic
indices and NDVI).

et al., 1999; Mitchell et al., 2001; Johnson et al.,
20049, or evaluate and refine predicted distribution
maps Anderson et al., 2003; Engler et al., 2004
Expert knowledge may have shown little effect in
our models because its ability to shape models was
weak: it served to select sites for model calibration
but did not constrain the choice of predictors. A fur-
ther impediment to effective influence may have been
the sometimes tenuous match between species’ pub-
lished habitat preferences and available land cover
information. Moreover, species’ perceptions of their
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environment may deviate considerably from human to provide quick answers. In essence, however, they
classifications of habitatkpight and Morris, 1996; attempt to fashion data where none exist. Their often
Cablk et al., 200p Reliance on land cover categories persuasive map outputs risk creating a false sense of
will certainly be problematic where species’ preferred certitude. Conclusive evaluation of the strengths and
habitat types are too fine-grained to be captured in weaknesses of these approaches will require data of
land cover maps and/or difficult to discriminate by suitable quality. Appropriate empirical data with fine
remote sensinggdwards et al., 1996 The remotely spatial resolution may be difficult to come by, but
sensed land cover map used in this study distinguishedresearchers could resort to simulated data.

only 24 land cover types globally. Alternative land Based on the results presented here, and the expe-
cover categorisations, such as the International Geo-rience of other authorsLloyd and Palmer, 1998;
sphere Biosphere Programme classification scheme orCollingham et al., 2000 the point sampling and iter-
Olson’s Global Ecosystem Framework (both available ative approaches look most promising. Although data

at http://edcdaac.usgs.gov/glcc/globddghtml), did inadequacies bar any firm conclusions, the point sam-
not, however, yield a better match with species’ habitat pling approach is likely to work best for species with
preferences. small ranges whose niche requirements are narrow and

Comparative studies appear rare, but purely geographically clustered. The iterative approach, in
knowledge-based and purely empirical models have contrast, may provide more nuanced predictions for
been found to yield similar result8B6lliger et al., species whose niche is less restricted.

2000; Petit et al., 2003Consequently, an integration Refinements may be possible in both approaches, for
of the two approaches may generally fail to improve example, by taking into account the species’ expected
results. In a study encompassing distribution models prevalence at fine resolution. Considerable progress
for 93 Australian vertebrates, incorporation of expert has recently been made on cross-scale predictions of
knowledge into otherwise empirical models did notsig- species’ prevalenceHartley et al., 200 Kunin and
nificantly improve performancePgarce et al., 2001 colleaguesKunin, 1998; Kunin et al., 2000andHe
Results presented here suggest that this holds true everand Gaston (2000)leveloped methods to estimate a
when models attempt to bridge two spatial scales, a sit- species’ total area of occupancy at fine resolution from
uation in which knowledge-based rules may appear to coarse-grained distribution maps. Such estimates could
have some advantage. be used to manipulate a species’ prior probability of
occurrence in models involving discriminant analysis
or alternative statistical algorithms.
6. Conclusion If, however, methods that rely entirely on coarse-
grained occurrence records prove unable to accurately

The quick pace of environmental change, our need to predict species’ distributions at fine spatial resolu-
understand its ecological implications, and the dissim- tion, a compromise may involve coarse-grained mod-
ilar scales at which researchers and decision-makersels that incorporate fine-scale information obtainable
operate beg for the development of effective methods with limited survey effort.Johnson et al. (2004jor
to translate observations at one spatial scale into reli- example, integrated a model describing patch-level
able predictions at another. In search of a solufRogt vegetation-use by individuals in one caribou herd with
and Schneider (199%)roposed a research framework a topography-based model describing the overall dis-
that involves continuous cycling between large and tribution of caribou herds in the Canadian Rockies.
small-scale studies, with results at one scale inform- The integration simply involved multiplying the pre-
ing investigations at the other. While in the long term dicted probability of occurrence of one model with
this may be the only route to a thorough understanding that of the otherJohnson et al., 2004Although their
of the cause-and-effect relationships shaping our envi- study did not strictly entail a change in resolution, the
ronment, quicker and cheaper solutions may be neededapproach may be applicable to cross-scale predictions.
in the meantime. Coarse-grained occurrence records spanning a large

Statistical approaches to cross-scale predictions, spatial extent could be combined with fine-grained data
such as those examined here, may have the potentialcollected over a small area to yield models that pre-
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Table A1

The 61 satellite-derived predictor variables available for model parameterisation

Satellite variable Description Measure Name
Cold cloud duration An index of rainfall, based on the number of Mean CCDmean
(CCD) hours a locality was covered by clouds Maximum CCDmax
assumed to bear rain. Rain-bearing clouds are Minimum CCDmin
associated with a particular threshold Variance CCDvar
temperature at their tops, which is recorded by Amplitude of annual cycle CCDamp1l
channel 2 of the High Resolution Radiometer Phase of annual cycle CCDphasel
on board the Meteosat satellite series of the Amplitude of biannual cycle CCDamp2
European meteorological satellite programme. Phase of biannual cycle CCDphase2
On a monthly basis, the index is thought to be Amplitude of triannual cycle CCDamp3
accurate ta-38 mm {Hay and Lennon, 1999 Phase of triannual cycle CCDphase3
Digital elevation model The United State’s Geological Survey provides Mean altitude above sea level DEM
(DEM) a digital elevation model with a resolution of
30 arc seconds, here used to determine mean
altitude per grid square.
Land surface temperature Land surface temperature indices are Mean LSTmean
(LST) calculated using a split-window algorithm to Maximum LSTmax
minimise the confounding effects of Minimum LSTmin
atmospheric attenuation and variable surface Variance LSTvar
emissivity Goetz et al., 2000 Price’s index, Amplitude of annual cycle LSTampl
used here, is based on channels 4 and 5 of the Phase of annual cycle LSTphasel
Advanced Very High Resolution Radiometers Amplitude of biannual cycle LSTamp2
(AVHRR) on board the US National Oceanic Phase of biannual cycle LSTphase2
and Atmospheric Administration’s (NOAA) Amplitude of triannual cycle LSTamp3
satellites. Both measure emitted thermal Phase of triannual cycle LSTphase3
infrared. The index is believed to be accurate
to £4°C in Africa (Hay and Lennon, 1999
Middle infrared radiation Radiation in the middle infrared is measured Mean MIRmean
(MIR) by AVHRR channel 3 and relates to Maximum MIRmax
temperature, but can also aid in land cover Minimum MIRmin
discrimination. While the interaction of middle Variance MIRvar
infrared radiation with targets is not yet well Amplitude of annual cycle MIRamp1
understood, Channels 3 has the advantage of Phase of annual cycle MIRphasel
suffering less from atmospheric attenuation Amplitude of biannual cycle MIRamp2
than other thermal channeldgy, 2000 Phase of biannual cycle MIRphase2
Amplitude of triannual cycle MIRamp3
Phase of triannual cycle MIRphase3
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Table Al Continued)
Satellite variable Description Measure Name
Normalised difference An index of vegetation biomass derived from Mean NDVImean
vegetation index AVHRR channels 1 and 2, which measure Maximum NDVImax
(NDVI) reflected solar radiation in the visible red and Minimum NDVImin
near infrared, respectively. Like other Variance NDVlvar
spectral vegetation indices, the NDVI Amplitude of annual cycle NDVIampl
exploits the fact that the photosynthetic Phase of annual cycle NDVIphasel
pigments of plants absorb visible light in the Amplitude of biannual cycle NDVIamp2
red wavelengths, while mesophyll tissue Phase of biannual cycle NDVIphase2
(non-photosynthesising plant tissue) reflects Amplitude of triannual cycle NDVlamp3
near-infrared wavelengths. This leads to a Phase of triannual cycle NDVIphase3
divergence in reflectance between the visible
and near-infrared, which distinguishes
vegetation from bare soiHay, 2000.
Air temperature (TAIR) This index of air temperature assumes that Mean TAIRmean
the radiometric (surface) temperature of a
fully vegetated canopy is in equilibrium with Maximum TAIRmax
ambient air temperature, because dense Minimum TAIRmIn
vegetation has a heat capacity similar to its Variance TAIRvar
surrounding air. The index therefore Amplitude of annual cycle TAIRampl
regresses LST against NDVI to determine Phase of annual cycle TAIRphasel
what value LST takes when NDVI is Amplitude of biannual cycle TAIRamp2
suggestive of full vegetation cover (generally Phase of biannual cycle TAIRphase2
0.65). At this point, LST should measure Amplitude of triannual cycle TAIRamp3
canopy surface rather than soil surface Phase of triannual cycle TAIRphase3
temperature. The resulting index is accurate
to £2.98-3.93C (Goetz
etal., 2000.
Vapour pressure deficit An estimate of near-surface atmospheric Mean VPDmean
(VPD) humidity indicative of the ‘drying power’ of
air (Goetz et al., 2000 It's computation Maximum VPDmax
requires an estimate of the near-surface Minimum VPDmin
water vapour content of air (U), which is Variance VPDvar
obtained via a split-window algorithm using Amplitude of annual cycle VPDampl
AVHRR channels 4 and 5. U then serves to Phase of annual cycle VPDphasel
determine the dew point temperature at Amplitude of biannual cycle VPDamp2
which saturation and condensation would Phase of biannual cycle VPDphase2
occur. To obtain the VPD, actual vapour Amplitude of triannual cycle VPDamp3
pressure (determined with the help of TAIR, Phase of triannual cycle VPDphase3

see above) is subtracted from saturation
vapour pressure. The index is accurate to
betweent6.0 mbar andt10.9 mbar,
depending on the satellite imagery’s spatial
resolution Goetz et al.,

2000; Hay and Lennon, 1999

Imagery from the US National Oceanic and Atmospheric Administration’s satellites were obtained as 10-day maximum value composites from
the US Geological Survey’'s EROS Data Centdty(://edcdaac.usgs.gov/1KM/1kmhomepage.dspagery from the European meteorological

satellite programme were obtained courtesy of Fred Snijders through the ARTEMIS program of the United Nations Food and Agricultural
Organisation. Monthly compositing was undertaken using ERDAS IMAGINE software (v.8.5). Fourier processing of the resulting monthly
data series was accomplished through custom-written programs in QuickBasic. Custom-written programs were also used for re-sampling, to
aggregate imagery to coarser resolution by averaging only valid terrestrial pixels.


http://edcdaac.usgs.gov/1km/1kmhomepage.asp

Table A2
Model details, indicating (a) the number of occurrence records available per species at each spatial resolution and the predictor varidhfe3éieetéc) direct, (d) iterative
and (e) point sampling models

Species Nahan’'s Fox's Crested Lesser Northern Yellow-rumped Bronze Munia Green-backed Garden Bulbul
Francolin Weaver Guineafowl Honeyguide Puffback Tinkerbird Camaroptera

(a) Number of occurrences at each spatial resolution

1/4 3 6 11 41 51 61 94 105 130
1/8 3 6 20 50 62 99 133 163 215
1/16 4 6 22 54 67 127 157 204 282
1/32 7 6 25 57 73 142 167 236 340
1/64 9 6 26 60 76 154 175 246 362
1/100 11 6 27 60 76 156 175 256 390
(b) Fine model predictor variables (trained at /6@ predict at 1/64)
1. VPDmean 1. VPDmean 1. NDVImean 1. VPDmin 1. CCDphasel 1. TAIRmean 1. MIRmean 1. CCDamp3 1. MIRampl
2. CCDvar 2. MIRamp2 2. MIRamp3 2. NDVImean 2. MIRphasel 2. MIRmax 2. MIRphasel
3. NDVIphase2 3. MIRmax 3. TARlamp1l 3. VPDphasel 3. TAIRphasel 3. CCDamp2 3. VPDphase2
4. LSTamp2 4. CCbamp2 4. CCDvar 4. CCDamp3 4. VPDamp3
5. MIRphase2 5. NDVImax 5. DEM 5. CCDampl 5. MIRphase3
6. LSTphase2 6. MIRamp2 6. LSTmax 6. LSTphase2 6. MIRphase2
7. MIRphasel 7.LSTphase2  7.LSTphase3 7. TAIRphase2 7. LSTphase3
8. NDVIphasel 8.LSTphase3 8. NDVlvar 8. NDVImean 8. MIRmean
9. LSTmax 9. VPDmean 9. CCDmean 9. MIRmin 9. NDVImax
10. MIRphase3 10. MIRamp3 10. MIRvar 10. TAIRampl
EPV 6.0 4.0 5.7 4.4 5.0 10.1 11.0 33.7 8.7

(c) Direct approach predictor variables (trained at I&predict at 1/64)
1. MIRphasel 1.VPDmin 1. MIRmean 1. CCDamp3 1.CCDphasel 1.NDVImin 1. MIRphasel 1. CCDphase2 1. LSTvar

2. TAIRvar 2. NDVImean 2. LSTamp2 2. LSTamp2 2. MIRphase2 2. VPDva-
3. NDVImin 3.NDViamp3  3.DEM 3. MIRmax
4. MIRamp2 4, LSTphase3
5. MIRamp3 5. TAIRphase2
6. MIRphasel

EPV 3.0 6.0 5.5 13.7 15.0 6.3 4.2 5.0 5.0
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Table A2 Continued)

Species Nahan'’s Fox’s Crested Lesser Northern Yellow-rumped Bronze Munia Green-backed Garden Bulbul
Francolin Weaver Guineafowl Honeyguide Puffback Tinkerbird Camaroptera
(d) Iterative approach predictor variables (final iteration: trained at’l3@2ed on predictions form previous iterations to predict at°}/64
1. MIRphasei 1.VPDmin 1.VPDmean 1. CCDmax 1. CCDphasel 1.NDVImin 2. CCDamp2 1. VPDphase2 1. LSTvar
2. CCDamp2 2. CCDamp3 2. NDVImin 2. MIRamp2 2. LSTphase3 2. CCDphase2
3. VPDphase3 3. CCDamp1l 3. DEM 3. TAIRmean 3. MIRphasel 3. CCDamp3
4.CCDphasel  4.NDVlampl 4. VPDmax 4. MIRphase2 4. NDVlIphasel
5. TAIRphase2 5. NDVImean 5. MIRamp3 5. VPDmean 5. VPDvar
6. MIRvar 6. CCDphase3 6. MIRmean 6. TAIRphase2 6. TAIRphasel
7. CCDamp3 7. MIRamp2 7. LSTamp2 7. MIRmax 7. CCDampl
8. LSTamp2 8. MIRamp1 8. NDVIamp3 8. TAIRmax 8. MIRamp3
9. LSTphase3 9. CCDphase2 9. TAIRamp3 9. NDVlvar
10. VPDphasel 10. VPDvar 10. MIRphasel
EPV 153.0 375.0 76.4 187.1 676.7 281.0 280.6 237.6 1445.0

(e) Point sampling approach predictor variables (predictors most frequently picked across 30 models per species trained by randomly sampling fifty
1/100 points within each 1/4square to predict at 1/10D

11]2POIN [PI180]0I7 / IV 12 UOSAIYJIW "'

1. NDVImin 1. 1. NDVImin 1. CCDamp3 1. NDVIphasel 1.CCDvar 1. VPDamp2 1. DEM 1. MIRmean
VPDphae3

2. VPDmin 2.VPDmin 2. TAIRphase2 2.VPDvar 2.CCDphase2 2.DEM 2. TAIRvar 2. CCDmax 2. CCDmean :

3. TAIRphase2 3. TAIRvar 3. CCDmax 3. VPDphase2 3. VPDamp2 3. NDVlamp1 3. CCDamp2 3. CCDamp2 3. CCDphase®

4.CCDamp2 4. 4. TAIRphasel 4. TAIRmean 4. VPDvar 4. \VVPDmin 4. NDVIlampl 4. TARIvar 4. CCDamp2 §
CCDphasel N

5.CCDamp3 5. CCDampl5. CCDphase2 5. CCDvar 5. TAIRphasel 5. NDVImin 5. TAIRphase3 5. VPDphase2 5. CCDphase3

6. CCDvar 6. VPDmean 6. CCDamp3 6. VPDamp2 6. CCDmax 6. VPDphase2 6. DEM 6. CCDphase3 6.CCDmax <

7. DEM 7.VPDamp37. CCDampl 7. VPDmin 7. NDVImin 7. VPDvar 7. LSTmax 7. MIRmean 7. TAIRphasel g

8. CCDphasel 8.VPDvar 8. TAIRamp2 8. CCDphase3 8. TAIRmax 8. MIRamp1l 8. VPDamp2 8. NDVImax 8. VPDphaseZK‘.\n>

9. CCDphase3 9. 9. VPDphasel 9. NDVImax 9. CCDvar 9. VPDphase3 9. NDVImin 9. VPDphase3 9. NDVlvar N
TAIRamp3

10. MIRphasel 10. 10. VPDphase2 10.DEM 10. DEM 10. NDVIphase2 10.VPDvar 10. VPDmIn 10. MIRamp1
CCDamp2

EPV 15.0 30.0 60.0 215.0 228.6 188.7 100.0 40.0 20.0

Variable names follovirable ALl Events per variable (EPV) indicate the number of presences (or absences if these were less numerous) used to train models, divided by the number
of predictors selected.
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