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ABSTRACT

 

Aim

 

Studies exploring the determinants of geographical gradients in the occurrence of
species or their traits obtain data by: (1) overlaying species range maps; (2) mapping
survey-based species counts; or (3) superimposing models of individual species’
distributions. These data types have different spatial characteristics. We investigated
whether these differences influence conclusions regarding postulated determinants
of species richness patterns.

 

Location

 

Our study examined terrestrial bird diversity patterns in 13 nations of
southern and eastern Africa, spanning temperate to tropical climates.

 

Methods

 

Four species richness maps were compiled based on range maps, field-
derived bird atlas data, logistic and autologistic distribution models. Ordinary and
spatial regression models served to examine how well each of five hypotheses predicted
patterns in each map. These hypotheses propose productivity, temperature, the
heat–water balance, habitat heterogeneity and climatic stability as the predominant
determinants of species richness.

 

Results

 

The four richness maps portrayed broadly similar geographical patterns
but, due to the nature of underlying data types, exhibited marked differences in
spatial autocorrelation structure. These differences in spatial structure emerged as
important in determining which hypothesis appeared most capable of explaining
each map’s patterns. This was true even when regressions accounted for spurious
effects of spatial autocorrelation. Each richness map, therefore, identified a different
hypothesis as the most likely cause of broad-scale gradients in species diversity.

 

Main conclusions

 

Because the ‘true’ spatial structure of species richness patterns
remains elusive, firm conclusions regarding their underlying environmental drivers
remain difficult. More broadly, our findings suggest that care should be taken to
interpret putative determinants of large-scale ecological gradients in light of the
type and spatial characteristics of the underlying data. Indeed, closer scrutiny of
these underlying data — here the distributions of individual species — and 

 

their

 

environmental associations may offer important insights into the ultimate causes
of observed broad-scale patterns.
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INTRODUCTION

 

Facilitated by recent advances in the availability and processing

of spatial data, analyses of the broad-scale geographical gradients

in the number of species or their traits, such as body size, threat

level or geographical range size, have rightfully received new

and significant prominence in ecology. The environmental

determinants of species richness patterns have been of particular

interest given their relevance to conservation (Balmford 

 

et al.

 

,

2001; Fleishman & Mac Nally, 2003) and to understanding the
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evolution of biodiversity (Pianka, 1966; Currie 

 

et al.

 

, 2004).

Potential determinants of species richness that have received

strong empirical support include energy (Wright, 1983; Jetz &

Rahbek, 2002; Hawkins 

 

et al.

 

, 2003a), temperature (Currie, 1991;

Rohde, 1992), habitat and topographic heterogeneity (Kerr,

2001; Rahbek & Graves, 2001; Jetz & Rahbek, 2002), past climate

dynamics (Dynesius & Jansson, 2000) and geometric constraints

(Colwell & Lees, 2000; Jetz & Rahbek, 2001). The relative importance

of these and other factors is hotly debated. Increasingly, therefore,

competing hypotheses are being scrutinized jointly so as to

establish which factor predominates. Much less scrutiny, however,

has been applied to the type and quality of the distribution data

used in these studies and how it might affect our understanding

of the underlying processes (but see Hurlbert & White, 2005;

Graham & Hijmans, 2006).

Three forms of distribution data are currently in use for

examining broad-scale ecological patterns, and here we scrutinize

their differences and ensuing consequences for patterns in species

richness. Most commonly, species richness patterns are derived

by overlaying species range maps, such as those found in field

guides and taxonomic reviews (Andrews & O’Brien, 2000;

Hawkins 

 

et al

 

., 2003b). A second source of species richness data

is field surveys that systematically record the identity and

number of species at selected sites, with sites consisting either of

a limited number of point localities (high spatial resolution but

low coverage, as for example in Fleishman & Mac Nally, 2003) or

regularly sized biodiversity atlas grid cells (high spatial coverage

but poorer resolution, as for example in van Rensburg 

 

et al

 

.,

2002). In recent years, a third source has emerged that is likely to

gain further prominence in the future: based on survey data, the

distributions of individual species are modelled with the help of

geographical information systems and easy to collect (often

remotely sensed) environmental data. The resulting distribution

models are then overlaid to determine the number of species

predicted to occur at individual locations (e.g. Gioia & Pigott,

2000; Lennon 

 

et al.

 

, 2000).

These three sources of species richness data — although clearly

related — need not yield identical patterns. Range maps depict the

extent of a species’ occurrence but generally omit the internal

structure of its distribution (Brown 

 

et al

 

., 1996; Gaston, 2003).

Species tend not to occur everywhere within their overall range

for a number of reasons, including stochastic processes, dispersal

mechanisms, intra- and interspecific competition and availability

of resources such as food, shelter or nesting materials (Pulliam,

2000; Huston, 2002). Particularly at fine spatial resolutions,

the number of unoccupied sites within a species’ range may be

considerable if occurrence patterns are approximately fractal

(Hartley 

 

et al

 

., 2004). In ignoring this internal porosity, range

maps provide only coarse sketches of species distributions, and

patterns derived by overlaying these maps can be expected to

overestimate species richness. Furthermore, the contiguous,

often blob-like, nature of range maps is likely to result in species

richness patterns that exhibit considerable spatial autocorrelation,

with smooth transitions between peaks and troughs (Hurlbert &

White, 2005). In contrast, surveys may exaggerate the porosity of

species ranges if they are conducted over a short time frame and

with limited observational effort. Species occupying a particular

site may be missed if they are temporarily absent, rare or cryptic

(Boone & Krohn, 1999). Consequently, survey-derived species

richness can be expected to underestimate the number of species and

to exhibit variegated patterns with less spatial autocorrelation.

The nature of modelled species distributions depends on the

modelling technique used to create them and, in terms of capturing

the internal structure of a range, is likely to fall somewhere

between survey data and range maps. Unlike survey data and range

maps, however, species distribution models risk considerably

overestimating the overall geographical extent of a species’

occurrence if range boundaries are determined by competitive

exclusion, dispersal barriers or other factors not accounted for

in the model. Species richness patterns produced by overlaying

distribution models are therefore likely to overestimate species

richness in areas and taxa in which competition or dispersal

limitations are important. In appearance, they can be expected to

show less variegation than patterns produced by survey data, but

less extreme spatial autocorrelation than those derived from

range maps.

How might these differences affect conclusions regarding the

determinants of species richness or broad-scale geographical

gradients in ecology in general? Effects on commonly accepted

hypotheses aimed at explaining the observed gradients may be

substantial, but have not previously been quantified. Here, we

use the landbird assemblage of southern and eastern Africa to

investigate how the source of species richness data impacts upon

the tenability of five major species richness hypotheses. Our

study is the first to analyse extensive survey-based distribution

data spanning a gradient from temperate to tropical.

 

MATERIALS AND METHODS

Species richness maps

 

Four species richness maps were developed for the terrestrial

avifauna of southern and eastern Africa. All summarize, at a spatial

resolution of 0.5

 

°

 

 longitude by 0.5

 

°

 

 latitude, the distributions of

1216 species in two avifaunal zones identified by de Klerk 

 

et al.

 

(2002) as the Southwestern and the Southern Savanna subregions.

Each of the four maps was, however, constructed using a differ-

ent type of underlying distribution data. (1) 

 

Range map richness

 

was derived by overlaying published species range maps. Range

maps for non-passerines were taken from the 

 

Handbook of the

Birds of the World

 

 (del Hoyo 

 

et al.

 

, 1992–2002) and those for

passerines from 

 

The Birds of Africa

 

 (Brown 

 

et al.

 

, 1982). (2) 

 

Atlas

richness

 

 counted the number of species observed in each half-

degree square (HDS) during field surveys conducted for bird

atlas projects in Angola, Botswana, the Democratic Republic of

Congo, Kenya, Lesotho, Malawi, Mozambique, Namibia, South

Africa, Swaziland, Tanzania, Uganda, Zambia and Zimbabwe.

While some of these atlas projects have been completed (Parker,

1994, 1999; Harrison 

 

et al.

 

, 1997; Dean, 2000; Carswell 

 

et al.

 

,

2005), others are ongoing and data were kindly provided by

researchers in the field. (3) 

 

Logistic richness

 

 draws on the same

field surveys as atlas richness, but raw data were enhanced



 

Spatial structure and species richness determinants

 

© 2007 The Authors 

 

Global Ecology and Biogeography

 

, Journal compilation © 2007 Blackwell Publishing Ltd

 

3

 

through distribution modelling before the number of species

predicted to occur in each HDS was tallied. Distribution models

were built with logistic regression, which quantified the statistical

relationship between the presence and absence of each species (as

observed in the field) and a set of satellite-derived environmental

indices representing elevation, temperature, precipitation,

humidity and green plant biomass. There were 61 indices in

total, capturing not only annual means but also the amplitude

and timing of cyclic annual, biannual and triannual fluctuations.

The models for individual species on average included 14 of these

indices as predictors after forward stepwise variable selection.

Models were implemented in 

 



 

-

 



 

, with variable selection

based on the Akaike information criterion, a measure of model

fit and parsimony. For optimal calibration, each species’ model

was trained with an equal number of presence and absence

observations (McPherson 

 

et al

 

., 2004). (4) 

 

Autologistic richness

 

was derived as logistic richness, except that distribution models

were built using autologistic regression. Unlike ordinary logistic

regression, autologistic regression takes into account the spatial

autocorrelation inherent in species distributions by quantifying

the extent to which the status (species present or absent) of any

one site is influenced by the status of neighbouring sites (Augustin

 

et al.

 

, 1996). Autologistic regression was implemented in 

 



 

-

 



 

via a custom-written program (see Appendix S1 in Supplementary

Material), using the same training data and environmental

predictors as selected in logistic models.

The latter two approaches explicitly exploit the environmental

associations of individual species to fill gaps in our knowledge of

species occurrences. It may thus seem tautological to analyse the

resulting richness maps for environmental correlates. Note,

however, that this tautology is not limited to richness maps based

on distribution models. Range map richness, which enjoys

widespread use in studies seeking the environmental drivers of

macroecological patterns, is equally affected because underlying

distribution maps are frequently drawn with reference to envi-

ronmental features (e.g. Rahbek & Graves, 2001). Distribution

models simply mimic this process in a more objective and

reproducible manner (Graham & Hijmans, 2006). Moreover, we

observed little congruence in our data set between the environ-

mental variables selected in individual distribution models and

those emerging as important determinants of species richness.

Measures of rainfall variability, for example, were on average

more popular in individual species’ models than indices of mean

temperature, an observation that runs counter to the findings for

species richness (see Results). Links between the environmental

associations of individual species and the environmental correlates

of species richness may therefore not always be straightforward

and require further investigation (McPherson, 2005).

 

Potential determinants of species richness

 

We examined five prominent hypotheses put forward to explain

species richness patterns. Each hypothesis was embodied by two to

three individual predictor variables (nine in total), as outlined below. 

(1) The 

 

productivity hypothesis

 

 proposes that the number of spe-

cies coexisting at a site is determined by the amount of energy

available in the form of food (Wright, 1983; Hawkins 

 

et al.

 

,

2003a). We chose estimates of net primary productivity (NPP)

from the DOLY global model (Woodward 

 

et al.

 

, 1995) and its

square (the relationship may be hump-shaped) as predictors rep-

resenting this hypothesis. An alternative measure of productivity,

the normalized difference vegetation index (NDVI), yielded sim-

ilar results in preliminary analyses and proved highly collinear

with NPP (Pearson’s 

 

r

 

 = 0.82, 

 

P

 

 < 0.01). It was consequently not

included in the analyses described below.

(2) The 

 

temperature hypothesis

 

 suggests that the influence of

energy on species richness is mediated not by food availability

but by a species’ thermoregulatory needs (Currie, 1991) or by

higher rates of biological interaction and/or diversification

(Rohde, 1992). To represent this hypothesis, we used an index of

mean annual air temperature (HEAT) derived from data collected

twice daily over an 18-year period (1982–99) by advanced very

high resolution radiometers on board satellites of the US National

Oceanic and Atmospheric Administration. Cloud contamination

in these satellite data was removed by maximum value compositing,

and the data were coarsened to 0.5

 

°

 

 from their original resolu-

tion of 8 km

 

2

 

. To allow for a possibly curvilinear relationship, the

square of HEAT was also included as a predictor. 

(3) The 

 

heat–water balance hypothesis

 

 postulates that the avail-

ability of water is as crucial an ingredient of life as energy

(Andrews & O’Brien, 2000). To embody this hypothesis among

our predictors, we used mean annual air temperature and its

square (see above), and an index of mean annual rainfall (RAIN).

This index, known as ‘cold cloud duration’, was calculated based

on 10 years (1989–99) of data collected by the European Meteosat

satellite, and in Africa better captures spatial heterogeneity in

rainfall than land-based measures of precipitation interpolated

between meteorological stations (Hay & Lennon, 1999). 

(4) The 

 

habitat heterogeneity hypothesis

 

 suggests that diverse

habitat fosters species richness by facilitating specialization and

niche separation (Kerr, 2001; Ruggiero & Kitzberger, 2004).

We combined two predictor variables to test this hypothesis.

The first variable tallied the number of land cover classes (LCOV)

encompassed by each HDS. The second, topographic hetero-

geneity (TOPO), quantified the spatial variance in altitude across

each HDS, and was log-transformed to meet assumptions of

normality. In addition to representing current patterns of habitat

turnover, topographic heterogeneity also carries a regional his-

torical/evolutionary signal in that it indicates possible barriers to

dispersal and the potential for past isolation (Jetz & Rahbek,

2002). The land cover map and digital elevation model used to

compute LCOV and TOPO, respectively, were downloaded

from the US Geological Survey’s EROS Data Center (http://

edcdaac.usgs.gov/) and each had a resolution of 30 arcsec. 

(5) The 

 

climatic stability hypothesis

 

 postulates that species rich-

ness is lower in climatically variable environments, because

fluctuations in temperature or resource availability are

physiologically challenging and hinder niche specialization

(Ruggiero & Kitzberger, 2004). Both long-term (thousands of

years; Dynesius & Jansson, 2000) and short-term (e.g. within

season; H-Acevedo & Currie, 2003) fluctuations have been

deemed influential. In the absence of sufficient data to reliably

http://
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quantify longer-term trends, we used two measures of intra-annual

climatic stability to represent this hypothesis — VarHEAT, which

measured annual variance in air temperature based on mean

monthly values, and VarRAIN, the annual coefficient of variation

in cold cloud duration.

A correlation matrix for all nine individual predictor variables

is provided as an electronic appendix (see Table S1 in Supple-

mentary Material). Collinearity was relatively low (Pearson’s

 

r

 

 < 0.65) except between NPP, RAIN and VarHEAT.

Although land area can also have important effects on species

richness, it was not included as a predictor in our models because

exploratory analyses suggested that it bore little influence over

our four measures of species richness (

 

r

 

2

 

 

 

≤

 

 0.13 in ordinary least

square regressions). Variation in the areal extent of half-degree

grid squares across our study region is therefore unlikely to have

had a significant impact on our results (see also Nogués-Bravo &

Araújo, 2006).

 

Statistics

 

Spatial autocorrelation in the four species richness maps was

quantified using Moran’s 

 

I

 

 correlograms (Lichstein 

 

et al.

 

, 2002).

To measure concurrence between different richness variables,

pair-wise regressions were used. The relative merit of different

species richness hypotheses was tested by regressing each

richness variable against sets of predictors embodying either

a single hypothesis (single-hypothesis models) or all five hypotheses

combined (multi-hypothesis models). The relative explanatory

power of individual predictors and hypotheses was then quantified

as the change in the Akaike information criterion (

 

∆

 

AIC) that

resulted when one or more predictors were dropped from the model.

This procedure is equivalent to a log-likelihood ratio test, penalized

for the number of predictors whose effect is being assessed.

Regressions were implemented in 

 



 

-

 



 

 as both ordinary

least squares regressions (OLSs) and conditional autoregressive

spatial linear models (SLMs; Lichstein 

 

et al.

 

, 2002). SLMs were

used because OLS residuals always retained considerable spatial

autocorrelation, which violates statistical assumptions and casts

doubts on parameter estimates (Legendre, 1993; Lennon, 2000).

SLMs differ from OLSs in estimating a spatial signal (rho) which

captures spatial autocorrelation in the response variable not

accounted for by spatial autocorrelation in the predictors.

Mechanically, the spatial signal quantifies how much the

observed response deviates from that predicted by explanatory

variables as a result of neighbourhood effects. Neighbourhood

configurations must be specified, and two were tested in our

analyses: (1) in short-lag SLMs, each HDS had up to eight equally

weighted neighbours, consisting of its immediately adjoining

grid squares (fewer than eight near coasts and the boundary of

the study region); and (2) in long-lag SLMs, neighbourhood size

was defined empirically by the distance at which spatial auto-

correlation (Moran’s 

 

I

 

) in OLS residuals first turned non-significant,

with neighbours’ influence on each other weighted by the inverse

of the distance between them (Lichstein 

 

et al.

 

, 2002). This

resulted in extremely large neighbourhoods (133 neighbours per

quadrat on average) and correspondingly lengthy computing

times (12 days per response variable on a PC with a 3.20 GHz

Dual Core Xeon processor and 4 GB RAM). We therefore ran

long-lag SLMs only for range map and atlas richness, the two

most divergent richness types. In both cases, short-lag SLMs were

considerably better at reducing residual spatial autocorrelation

(see Fig. S1 in Supplementary Material). We thus present only

their results below. It is worth mentioning, however, that short-

and long-lag SLMs yielded qualitatively similar results, ranking

the explanatory power of all five hypotheses in identical order.

 

RESULTS

The four patterns of species richness

 

Species richness maps derived from all four sources exhibited

considerable spatial autocorrelation (Fig. 1). Spatial autocorrelation

was least prominent in atlas richness and most pronounced in

range map richness, although at some spatial lags it was strongest

in logistic richness. Autologistic richness exhibited levels of

spatial autocorrelation intermediate between atlas richness and

range map richness (Fig. 1; see also the degree of smoothness in

Fig. 2). Despite differences in spatial structure, all four richness

maps suggested broadly similar geographical patterns, indicating

identical troughs and peaks in diversity (Fig. 2). Notwithstanding

these similarities, systematic differences between the four sources

of richness data were noticeable. The number of species per

HDS, for example, was generally lower in atlas richness than in

the other three sources (Figs 2 & 3a–c). Logistic and autologistic

richness yielded comparable diversity estimates (Fig. 3d),

but both suggested higher peaks and lower troughs in species

richness patterns than range map richness (Figs 2 & 3e,f ).

Pair-wise regressions between the four richness variables

confirmed considerable discrepancies. In OLS regressions, species

Figure 1 Moran’s I correlogram, indicating spatial autocorrelation 
in each of the four richness variables. Higher absolute values of 
Moran’s I indicate stronger spatial autocorrelation. Symbols are 
filled where Moran’s I was statistically significant (P < 0.05), open 
where not. Standard errors are too small to show (≤ 0.0001).
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Figure 2 Species richness patterns according 
to range maps, bird atlas surveys, logistic 
distribution models and autologistic 
distribution models. Hatched areas in atlas 
richness indicate half-degree squares that were 
not surveyed. The study area, outlined in 
black, encompassed two avifaunal zones 
identified as the Southwestern and Southern 
Savanna subregions by de Klerk et al. (2002). 
Grey lines indicate country boundaries.

Figure 3 Scatter plots illustrating how each of the four species richness variables relates to the others. Each point plotted represents one half-
degree square. The diagonal line indicates hypothetical unity. Points below this line signal that species richness was lower according to the species 
richness variable represented by the y-axis than that represented by the x-axis; points above signal the contrary.
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richness derived from one source on average explained only

56% of the variance in species richness derived from another

source (range in 

 

r

 

2

 

: 0.33–0.81, 

 

n

 

 = 12). Symptomatic of the poor

correspondence between richness variables was the fact that OLS

regression slopes always differed significantly from unity (

 

P

 

 < 0.01;

mean slope = 0.75, range 0.46–1.10, 

 

n

 

 = 12). SLMs yielded

higher coefficients of determination than OLS regressions (mean

 

r

 

2

 

 = 0.87, range 0.65–0.99, 

 

n

 

 = 12), but this reflected strong

neighbourhood effects (mean partial 

 

r

 

2

 

 of the spatial signal =

0.30, range 0.10–0.53, 

 

n

 

 = 12), rather than correspondence

between richness variables (mean partial 

 

r

 

2

 

 of predicting richness

variable = 0.06, range 0.02–0.23, 

 

n

 

 = 12). Regression slopes

differed significantly from unity in all but one case (autologistic

richness predicted atlas richness with a slope of 0.99).

 

The different determinants of species richness

 

Based on coefficients of determination, our environmental

predictors captured patterns in range map, logistic and autologistic

richness better than patterns in atlas richness (see total 

 

r

 

2

 

 in Table 1

and Supplementary Table S2). OLS multi-hypothesis models,

for example, explained 63%, 70%, 57% and 34% of the variation

in these richness variables, respectively. Coefficients of deter-

mination were higher in SLMs (Table 1), but the variance

explained by predictors reduced to 58%, 65%, 50% and 26%,

respectively, when contributions from neighbourhood effects

were removed.

Individually, the nine predictors generally behaved as expected,

with some notable exceptions (Tables 1 & S2). HEAT and its

square tended to cancel out each other’s effect (e.g. note the low

partial 

 

r

 

2

 

 in Table 1), because the relationship between HEAT and

our four richness variables turned out to be primarily linear and

negative (scatter plots, not shown). RAIN generally promoted

richness as anticipated, but had a reducing effect on atlas richness.

VarRAIN consistently defied expectations by influencing all

richness variables positively.

The relative importance of individual predictors and the

hypotheses they embodied changed with both the source of richness

data and the regression technique used. In multi-hypothesis

regressions, range map richness was always best predicted by

productivity. Atlas richness responded primarily to productivity

in the OLS, but habitat heterogeneity in the SLM. Logistic richness

assigned temperature the most importance in the OLS, but

heat–water balance predominated in the SLM. Autologistic

Table 1 Results of multi-hypothesis regressions of each richness variable against the nine environmental predictors encapsulating five 
hypotheses. Parameter estimates for the predictors are significant at P < 0.05 unless otherwise indicated (n.s.). Partial coefficients of determination 
(partial r2) indicate each predictor’s relative importance in the model (∆AIC produced identical rankings). Predictor names follow those defined 
in Materials and Methods, where NPP is a measure of net primary productivity, HEAT and RAIN are satellite-derived indices of mean annual air 
temperature and precipitation, respectively, LCOV measures habitat diversity as the number of land-cover classes per grid cell, TOPO describes 
topographic heterogeneity as spatial variance in altitude, VarHEAT is the intra-annual variance in HEAT, and VarRAIN the intra-annual 
coefficient of variation in RAIN. Single-hypothesis models produced similar results, summarized in Table S2 (see Supplementary Material).

Richness 

(sample size) Total r 2 Intercept

Productivity 

Heat−water balance

Habitat 

heterogeneity Climatic stability

rho

 Temperature

RAINNPP NPP 2 HEAT HEAT2 LCOV TOPO VarHEAT VarRAIN

 Ordinary least squares (OLSs)

Range map Parameters: −145.45 44.62 −2.87 12.80 −0.22 −0.03n.s. 5.10 24.34 −0.14 12.62

(n = 2716) 63.1% Partial r2: 12.3% 9.3% 0.2% 0.2% 0.0% 0.9% 2.8% 0.1% 2.3%

Atlas Parameters: −270.48 46.24 −3.50 13.24 −0.26 −0.75 12.27 24.53 0.61 13.79

(n = 2233) 33.5% Partial r2: 8.6% 8.4% 0.1% 0.2% 1.6% 3.3% 1.9% 1.0% 1.6%

Logistic Parameters: 160.60 29.10 −1.84 8.86n.s. −0.35 0.04n.s. 8.99 15.71 −0.54 18.28

(n = 2716) 69.9% Partial r2: 2.7% 2.0% 0.0% 0.3% 0.0% 1.4% 0.6% 0.7% 2.5%

Autologistic Parameters: 170.15 19.99 −1.11 4.54n.s. −0.21 −0.18 11.37 27.43 −0.56 9.99

(n = 2716) 56.7% Partial r2: 1.4% 0.8% 0.0% 0.1% 0.1% 2.5% 2.0% 0.8% 0.8%

Spatial linear models (SLMs)

Range map Parameters: 66.89 n.s. 23.15 −1.29 1.61n.s. 0.00n.s. 0.21 2.83 15.48 −0.10n.s. 4.80 0.13

(n = 2716) 94.5% Partial r2: 0.9% 0.5% 0.0% 0.0% 0.0% 0.2% 0.5% 0.0% 0.1% 31.4%

Atlas Parameters: 158.76 n.s. 13.94 −0.82 −7.66n.s. 0.07 n.s. −0.83 10.22 20.06 0.23n.s. 3.23n.s. 0.13

(n = 2233) 66.1% Partial r2: 0.2% 0.1% 0.0% 0.0% 0.6% 1.7% 0.6% 0.0% 0.0% 32.6%

Logistic Parameters: 476.78 18.68 −1.08 −3.48n.s. −0.17 0.44 3.37 8.56 −0.74 8.50 0.13

(n = 2716) 91.3% Partial r2: 0.3% 0.2% 0.0% 0.0% 0.1% 0.1% 0.1% 0.2% 0.2% 21.4%

Autologistic Parameters: 490.60 11.34 −0.65 −9.59 0.04 n.s. 0.34 5.06 12.53 −0.57 0.12n.s. 0.13

(n = 2716) 88.5% Partial r2: 0.1% 0.1% 0.0% 0.0% 0.1% 0.3% 0.2% 0.1% 0.0% 31.8%
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richness favoured habitat heterogeneity in the OLS, but heat–

water balance in the SLM (Fig. 4). Results were similar in single-

hypothesis models (see Fig. S2 & Table S2 in Supplementary

Material). Comparing Moran’s I correlograms of each richness

variable against those of its top one or two predictors showed

that SLMs ascribed primary importance to those explanatory

variables whose spatial structure best matched the spatial

structure of the response (Fig. 5).

DISCUSSION

The four maps of terrestrial bird species richness in southern and

eastern Africa exhibited the expected characteristics. Range

maps, as a result of their contiguous nature, produced the most

spatially autocorrelated richness patterns. Survey-based atlas

data, which may exaggerate the internal porosity of species

ranges, yielded the least spatially autocorrelated patterns and the

lowest estimates of species richness. Among distribution models,

which were expected to capture at least some internal range

structure, autologistic models yielded species richness patterns of

intermediate spatial autocorrelation, as anticipated. In contrast,

overlaying logistic distribution models resulted in patterns

practically as spatially autocorrelated as range map richness and

yielded the overall highest estimates of species richness (up to

742 species per HDS in East Africa). This suggests that logistic

distribution models overestimated both the contiguity and overall

extent of species ranges. Graham & Hijmans (2006) reported

similar findings for maximum entropy (Maxent) models: these

distribution models predicted far larger ranges for Californian

reptiles and amphibians than suggested by either occurrence

Figure 4 Multi-hypothesis regression results illustrating the relative importance of five hypotheses in explaining the four species richness 
variables. All nine predictor variables as listed in Table 1 are included in the model. The relative importance of each hypothesis is indicated 
by the magnitude of change in the Akaike information criterion (∆AIC) that resulted if all relevant predictors were dropped from the model. 
Note that ∆AIC is comparable within but not across response data (i.e. richness data type), with larger values (taller bars) signifying greater 
importance. Importance varied with both the source of richness data and the regression type: (a) ordinary least squares regressions; 
(b) spatial linear models. Single-hypothesis models produced similar results, summarized in Fig. S2 in Supplementary Material.

Figure 5 Moran’s I correlograms indicating 
the spatial structure in each richness variable 
and its primary predictors, as chosen by SLMs. 
Close correspondence between the spatial 
structure of response and predictor are 
evident, especially in the case of range map 
richness (a) and atlas richness (b), which, 
respectively, represent the high and low 
extremes of spatial autocorrelation in species 
richness patterns. Standard errors are too 
small to display (≤ 0.0001).
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records or expert range maps, and accordingly produced higher

estimates of species richness.

Despite their differences, all four maps of the landbird

richness in southern and eastern Africa exhibited broadly similar

patterns. These broad similarities stand in stark contrast to

the dramatic differences between range map and survey-based

estimates of North American bird diversity reported by Hurlbert

& White (2005). Besides including richness values of only up to

c. 100 species, the survey data these authors used were fine-grained

relative to the generally coarse nature of range maps; discordance

between richness sources therefore possibly reflected differences

in spatial scale. Analyses by Graham & Hijmans (2006), for

example, show clearly that differences between sources in overall

patterns of richness diminish as spatial scale (resolution) coarsens.

In our analyses, the relatively coarse nature (half-degree resolution)

of atlas data and distribution models would have minimized

discrepancies in scale with range maps, explaining why patterns

in richness were broadly similar between sources.

Among our nine predictor variables, those relating to pro-

ductivity and habitat heterogeneity affected species richness in

the expected manner: the effect of productivity was positive

if saturating, and increases in the two measures of habitat heter-

ogeneity, in particular land cover diversity, led to increases

in species richness. Other predictors, however, did not always

influence species richness in the way anticipated. Mean annual

air temperature, for example, affected species richness negatively,

contrary to the predictions of the temperature hypothesis.

Negative relationships between temperature and bird diversity in

sub-Saharan Africa have been reported before (Jetz & Rahbek,

2002), and may indicate that — at least for homeotherms — excessive

heat is as difficult to cope with physiologically as cold. As mean

annual temperature correlates positively with intra-annual

temperature variation (Table S1), the difficulty might alterna-

tively lie in coping with temperature swings rather than heat

per se. Moreover, the availability of water may influence and limit

the effect of temperature in the subtropical and warm temperate

climes of our study region (Andrews & O’Brien, 2000). Pre-

dictions of the climate stability hypothesis were countered by the

consistently positive effect that temporal variability in rainfall

exerted on species richness, possibly because predictably variable

(seasonal) climates foster diversity when different species are

maximally adapted to the environment at different times.

Energy-related hypotheses have been found to explain more of

the variation in species richness at broad scales than any compet-

ing hypotheses (e.g. Hawkins et al., 2003b; Tognelli & Kelt, 2004;

Evans et al., 2005), recently prompting the suggestion that ecologists

are beginning to understand what drives patterns in species

richness (Hawkins et al., 2003a). In much of the species richness

literature, however, the relative importance of determinants — or

at least the scale at which determinants appear influential — has

potentially been affected by the use of non-spatial statistical

techniques (Legendre, 1993; Lennon, 2000; Diniz-Filho et al.,

2003). Such techniques, in assuming independence among data

points, may be ill-suited to the analysis of species richness gradients,

which are spatially autocorrelated as a result of the ecological

processes shaping the distributions of individual species (e.g.

dispersal or conspecific attraction in habitat choice). Specifically,

energy-related variables, such as temperature, have possibly been

favoured over variables describing topography and habitat type

because of a statistical artefact: when the response variable exhibits

spatial autocorrelation, OLS regressions assign undue influence

to spatially autocorrelated predictors (Lennon, 2000). The use of

spatial regression techniques, which mean to control for this

artefact, has been found to shift emphasis from more to less

spatially autocorrelated predictors (Lichstein et al., 2002; Diniz-

Filho et al., 2003), and from energy-related variables to those

describing habitat heterogeneity (Tognelli & Kelt, 2004). Changes

in the relative importance of predictors between ordinary and

spatial regressions were less clear-cut in our analyses, however, and

seemed to depend on the source of species richness data.

Notwithstanding shifts in the relative importance of predictors,

energy-related variables often retain their pre-eminent status in

explaining species richness patterns even once the artefacts of

spatial autocorrelation are accounted for (Jetz & Rahbek, 2002;

Tognelli & Kelt, 2004). In our analyses, SLMs suggested that three

of the four species richness patterns were best explained by

energy-related hypotheses: productivity turned out top for range

map richness, whereas heat–water balance best described logistic

and autologistic richness. Moreover, these three energy-

dominated models attained greater explanatory power than the

model favouring habitat heterogeneity for atlas richness.

Such results might boost ecologists’ confidence in energy as

the primary determinant of species richness patterns. Yet two

observations warn against this conclusion. First, we suspect that

the importance of energy-related variables remains inflated, simply

because of uncertainty over the true spatial structure of species

richness patterns at a given resolution. As we demonstrate, range

map richness and survey richness provide an estimate of the

upper and lower bounds of spatial autocorrelation in true species

richness, but cannot reveal the exact shape that spatial structure

in species richness takes in reality. Importantly, this exact shape

appears pivotal in determining the relative importance of predictor

variables in SLMs. We noted in our results the tendency of

energy-related hypotheses (productivity, temperature and

heat–water balance) to relinquish explanatory power to habitat

heterogeneity as spatial autocorrelation in the response variable

diminished: at intermediate levels of spatial autocorrelation

(autologistic richness), energy and habitat heterogeneity

achieved almost equal importance, but energy dominated where

spatial structuring was strong (range map and logistic richness),

and habitat heterogeneity prevailed where it was comparatively

weak (atlas richness; see Fig. 4). It thus appears that model fit

is greatly driven by the match between spatial structure of the

predictor and the response variable (see Fig. 5). Second, greater

explanatory power of energy-favouring models is no consolation,

because models for range map, logistic and autologistic richness

are all somewhat tainted by circularity (see Methods). Care must

therefore be taken when interpreting coefficients of determination

in analyses of species richness based on such data.

In conclusion, we have demonstrated that, despite broadly

similar geographical patterns, four different but legitimate types

of species distribution data yield four different answers as to the
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relative importance of postulated determinants of a core ecological

gradient, namely broad-scale patterns in diversity. Disagreements

over which environmental factors drive these patterns arise

because each type of distribution data imposes a different spatial

structure on the pattern in question. These differences in spatial

structure affect the ranking of predictor variables, even in

sophisticated regression techniques that control for spurious

effects of spatial autocorrelation. The relative merit of different

hypotheses seeking to explain broad-scale patterns in ecology

based on distribution data therefore remains uncertain, and is

intricately linked to the type of data used. We urge scientists to

interpret their results with this qualification in mind. Additionally,

we encourage those searching for the environmental determinants

of broad-scale patterns in species richness to afford greater

attention to the ecological drivers of the distribution of individual

species. The relationship between the requirements of individual

species and apparent correlates of species richness need not

be straightforward, and may provide deeper insights into the

mechanism underlying broad-scale ecological gradients.
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