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abstract: Comparative methods are widely used in ecology and
evolution. The most frequently used comparative methods are based
on an explicit evolutionary model. However, recent approaches have
been popularized that are without an evolutionary basis or an un-
derlying null model. Here we highlight the limitations of such tech-
niques in comparative analyses by using simulations to compare two
commonly used comparative methods with and without evolutionary
basis, respectively: generalized least squares (GLS) and phylogenetic
eigenvector regression (PVR). We find that GLS methods are more
efficient at estimating model parameters and produce lower variance
in parameter estimates, lower phylogenetic signal in residuals, and
lower Type I error rates than PVR methods. These results can very
likely be generalized to eigenvector methods that control for space
and both space and phylogeny. We highlight that GLS methods can
be adapted in numerous ways and that the variance structure used
in these models can be flexibly optimized to each data set.

Keywords: generalized least squares (GLS), phylogenetic eigenvector
regression (PVR), comparative methods.

Introduction

The comparative method is one of the most successful
tools for testing theories in ecology and evolution (May-
nard Smith 1978; Felsenstein 1985, 1988; Harvey and Pagel
1991; Bennett and Owens 2002; Garland et al. 2005; Freck-
leton 2009). In biology, the comparative method uses nat-
ural variation within and between groups of species as a
cost-effective partial substitute for experimental manip-
ulation. By using natural variation, comparative methods
allow very broad hypotheses to be tested, in addition to
hypotheses about factors that cannot easily be manipulated
experimentally.

A drawback of the comparative method is that because
the factors examined are usually uncontrolled, the results
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can be confounded in various ways. For example, species
in a comparative analysis are related to each other and, as
a consequence, may share similarities because they inherit
them from their ancestors and not because of independent
evolution (Felsenstein 1985; Harvey and Clutton-Brock
1985; Harvey and Pagel 1991). Thus, if data are analyzed
by assuming that each species is independent in the sta-
tistical sense (implying that each species represents an in-
dependent evolutionary origin of each trait state), statis-
tical tests will be compromised by phylogenetic relatedness
among species (Grafen 1989; Martins and Garland 1991).

A suite of methods has been developed to deal with
phylogenetic nonindependence in comparative data (e.g.,
Cheverud et al. 1985; Felsenstein 1985; Grafen 1989; Git-
tleman and Kot 1990; Lynch 1990; Pagel and Harvey 1992;
Martins and Hansen 1997; Pagel 1997, 1999; Diniz-Filho
et al. 1998; Housworth et al. 2004; Garland et al. 2005).
These methods are closely related to statistical methods
for addressing nonindependence used in other disciplines,
including econometrics, spatial statistics, meta-analysis,
and genetics (Gittleman and Kot 1990; Lynch 1990; Cressie
1993; Pagel 1997, 1999; Housworth et al. 2004; Dormann
et al. 2007; Ives et al. 2007; references cited in Freckleton
and Jetz 2009; Hadfield and Nakagawa 2010).

In broad terms, the current state of comparative meth-
ods can be summarized as follows: (1) Comparative meth-
ods use model-based analyses of trait evolution and em-
phasize the relationship between the evolutionary model
and trait data (Felsenstein 1985; Hansen 1997; Pagel 1997,
1999; Harvey and Rambaut 2000; Hansen et al. 2008). (2)
The approach uses comparisons of competing models to
distinguish hypotheses (e.g., Pagel 1997, 1999; Harmon et
al. 2003; Hansen et al. 2008). (3) The focus in comparative
analysis has shifted more in favor of using phylogenetic
information to improve our understanding of the evolu-
tionary process and as a key tool in the study of macro-
evolution (Freckleton et al. 2003; Kelly and Price 2004;
Paradis 2005; Freckleton and Harvey 2006; Thomas et al.
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Comparing Comparative Methods E11

2006). This is a shift in attitude, as the comparative method
was largely regarded as a way of eliminating a “nuisance”
in the data analysis: phylogeny was a problem that weak-
ened analyses (Ricklefs and Starck 1996).

Although the methods cited above are related to meth-
ods for statistical analysis used in other areas of statistics,
this does not mean that all methods are equally as useful
or generally applicable. One of the fundamental tenets of
the comparative method is that the relationships between
species’ traits result from common ancestry (Felsenstein
1985; Harvey and Pagel 1991). Consequently, in compar-
ative analyses we can specify how we believe traits have
evolved, model the process, and use the resultant model
to specify how species’ traits should relate to each other.
Felsenstein (1973, 1985) was the first to do this in the
context of comparative data, by modeling continuous traits
using a Brownian process. In other disciplines this is not
generally as straightforward: for example, in spatial anal-
ysis, a covariance structure has to be postulated, tested,
and then refined or changed (Haining 1990). There is
rarely an a priori model for such dependency, which may
be very complex and difficult to characterize, and a fitted
model may not be uniquely the best fit (Rohlf 2001).

Not all methods are equally capable of informing about
the evolutionary process, and some approaches have been
developed without an explicit evolutionary basis. Specif-
ically, methods have been borrowed from other disciplines,
in particular from spatial statistics. These include phylo-
genetic autocorrelation, based on spatial autocorrelation
(Cheverud et al. 1985; Gittleman and Kot 1990), and phy-
logenetic eigenvector regression, based on spatial eigen-
vector regression (Diniz-Filho et al. 1998). The former is
not widely used, presumably because it is very similar to
generalized least squares (GLS) methods that have a more
intuitive evolutionary basis (e.g., Martins and Hansen
1997; Pagel 1997, 1999). However, the latter method is
argued to be an improvement over the autocorrelation
approach (Diniz-Filho et al. 1998), and it has become
increasingly frequently used in controlling for phylogenetic
dependence (e.g., Küster et al. 2008), to look at the com-
bined effects of spatial and phylogenetic effects in com-
parative data (e.g., Kühn et al. 2009), and in predicting
conservation status (Safi and Pettorelli 2010). This is de-
spite criticisms of the likely efficiency of the method in
removing phylogenetic dependence from analyses (Rohlf
2001; Adams and Church 2011).

In this article, we use a comparison between the com-
monly used comparative methods of GLS and phylogenetic
eigenvector regression (PVR) to highlight the problems of
using techniques without an evolutionary basis as an ad
hoc “fix” for phylogenetic structure in comparative data.
These include reduced efficiency of estimation, enhanced
variance in parameter estimates, inadequacy in dealing

with phylogenetic signal, and increased Type I errors.
These results can perhaps be generalized to apply to spatial
eigenvector methods that have also been criticized in the
literature (e.g., Beale et al. 2010). They have particular
relevance for studies seeking to combine both phylogenetic
and spatial eigenvectors (e.g., Kühn et al. 2009; Safi and
Pettorelli 2010). Model-based approaches are more likely
to succeed, as they offer better diagnostics and the ability
to select between alternative formulations better tailored
to the structure of the data.

Methods

Generalized Least Squares

The GLS model for data has been extensively described
elsewhere in a comparative context (Grafen 1989; Martins
and Hansen 1997; Pagel 1997, 1999; Garland and Ives
2000). In basic terms, this method fits a linear model to
data in which a dependent variable, y, is modeled as a
linear function of predictors x. The linear model relating
X and Y, the observations of x and y, is

Y p Xb � e. (1)

The vector b describes the effects of the predictors, and e
is an error term containing errors for the individual spe-
cies. The errors are assumed to have a multivariate normal
distribution with mean 0 and variance-covariance matrix
j2V.

The matrix V can be generated by making assumptions
about the way traits evolve (Grafen 1989; Hansen 1997;
Martins and Hansen 1997; Pagel 1997, 1999; Garland and
Ives 2000). The simplest assumption is that traits accu-
mulate variance as a linear function of time, that is, the
Brownian model. In this model, trait variances and co-
variances are proportional to time. This basic assumption
can be easily modified, for example, to allow for the speed-
ing up or slowing down of evolution, speciational evo-
lution, constraints on traits, or species-specific bursts of
evolution, among others (e.g., Hansen 1997; Martins and
Hansen 1997; Pagel 1997, 1999).

Once V has been specified, the theory for the linear
model is very well elaborated (e.g., McCullagh and Nelder
1989). The parameters of the model can be estimated in
a straightforward way and have desirable statistical prop-
erties, including being the best linear unbiased estimates
(McCullagh and Nelder 1989). Essentially this means that
the parameters estimated from this approach have the low-
est variance among unbiased estimators; estimators with
lower variance will be biased. Moreover, the estimated GLS
model parameters (estimated means and variances) can
be shown to be sufficient statistics for the true model, that
is, making maximal use of information in the data (Casella
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and Berger 2002). Put simply, if the structure of V is
correct, then all other estimators of b will be worse than
those estimated by GLS.

The GLS model is identical to the method of indepen-
dent contrasts developed by Felsenstein (1985; see also
Garland and Ives 2000; Freckleton and Harvey 2006;
Freckleton and Jetz 2009). The mathematical relationship
between the two is sketched by Felsenstein (1973). As a
consequence, inasmuch as the method of contrasts is a
special case of GLS, the GLS method is the most commonly
used comparative method.

Phylogenetic Eigenvector Regression

PVR is a filtering method that uses covariates to remove
dependencies from data. By including covariates with a
strong phylogenetic signal, the effects of phylogenetic de-
pendence can be statistically eliminated. The approach is
straightforward. The eigenvector decomposition of an evo-
lutionary distance matrix D (different from V, which is a
matrix of shared path lengths, i.e., a similarity matrix) is
used to generate a series of orthogonal covariates (eigen-
vectors) that summarize the phylogenetic structure. Some
criterion (see below and Diniz-Filho et al. 1998) is then
used to select the eigenvectors that optimize the descrip-
tion of the phylogenetic structure in the data. The selected
eigenvectors are then included as predictors in a multiple
regression of X on Y. The full recipe for the technique is
given by Diniz-Filho et al. (1998).

The PVR method was criticized by Rohlf (2001), who
pointed out that to fully capture the variation resulting
from strong phylogenetic effects (e.g., the Brownian
model), for a phylogeny of n species (or more generally,
an variance-covariance matrix), n independent ei-n # n
genvectors would be required. The inclusion of all of these,
using the method described by Diniz-Filho et al. (1998),
would leave no extra degrees of freedom or variance for
the inclusion of additional covariates or hypothesis testing.
This approach therefore requires that some eigenvectors
are not included. Because of this, the method will always
fail to completely account for phylogenetic dependence.
This procedure has never been justified, nor have the con-
sequences of these problems for analyses using the method
ever been explored.

Simulations

We performed 1,000 simulations of each parameter com-
bination, varying the number of species included from 10
to 100, and we simulated data according to equation (1).
We generated and analyzed phylogenies according to a
birth-death model (using the packages TreeSim and APE
in R; Paradis et al. 2004; R Development Core Team 2009;

Stadler 2010). In generating the phylogeny, we set the ratio
of extinction to speciation at 0.5. We found that changing
this ratio between 0 and 0.9 did not affect the results we
obtained. Very high values (or a coalescent model), how-
ever, substantially worsened the performance of the PVR
method (see appendix in the online edition of the Amer-
ican Naturalist). Using the phylogeny, we generated a var-
iance-covariance matrix, from which the function
rmvnorm (from the R package mvtnorm; Genz et al. 2010)
was used to generate random variates to describe the error
term (e) in equation (1). The slope relating x to y was
assumed to be 1.

We simulated two distributions of x. First, we assumed
that there was no phylogenetic structure in x and drew x
from a standard normal distribution. Second, we assumed
that x was phylogenetically structured and generated x
from a multivariate normal distribution, using rmvnorm.
We assumed that the mean of x was 0 and the variance
parameter was 1. In both cases, y was phylogenetically
structured and generated from a multivariate normal dis-
tribution using rmvnorm. We note here that the GLS
model makes no assumption about the phylogenetic dis-
tribution of x. Thus, in equation (1), the distribution of
X is unspecified and may or may not show phylogenetic
structure. The degree of phylogenetic structure in X is
expected to affect the variance in estimates of model pa-
rameters. This is because the expected variance in the pa-
rameters is given by

2 �1 ′ �1Var (b) p j (XV X ) . (2)

In the case of a single predictor, is a scalar and�1 ′XV X
the greater the phylogenetic signal, the smaller this value
will be. This is because phylogeny better predicts the value
of X when the phylogenetic signal in the data is high.
Consequently, when the phylogenetic signal is high,

is large and the variance in b is greater; that�1 ′ �1(XV X )
is, increasing phylogenetic signal in the predictors will in-
crease the variance in estimates of model parameters.
However, with other aspects of the method, specifically
Type I errors, efficacy of the method to account for phy-
logenetic nonindependence should be unaffected.

The first step in a PVR analysis is to select the optimum
subset of eigenvectors for inclusion in a multiple regression
of x against y. The literature on PVR methods is not clear
on how to do this. Most suggest including all eigenvectors;
however, for N species there will be eigenvectors,N � 1
so a regression of y on x and all eigenvectors will have
insufficient degrees of freedom to allow for any statistical
testing. We therefore included only the first 75% of ei-
genvectors, that is, those that explain the largest amount
of variation in the distance matrix. We performed a mul-
tiple regression of y against x and the first 75% of eigen-
vectors, and then from these we selected the statistically
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significant ones for inclusion in the final analysis (e.g.,
Diniz-Filho et al. 1998). The literature on PVR is also
unclear as to whether the predictor variable, x, should be
included in the initial eigenvector selection. Here, x was
included in both analyses, as this should minimize sen-
sitivity of output to possible collinearities (e.g., Freckleton
et al. 2002). As a contrast, we also performed the simu-
lation with another commonly used method: all eigen-
vectors were regressed on y alone to select the significant
eigenvectors. These were retained and used to predict y
from x. We do not report the results from this method,
as it has the obvious problem of confounding phylogenetic
signal in the data, the residuals, and the predictor (e.g.,
see Hansen et al. 2008 for an illustration).

For each set of simulated data, we used GLS and PVR
to estimate the relationship between x and y. We recorded
the mean and standard error of the estimated slope for
the relationship, as well as the variance in the slope esti-
mates across the 100 simulations, for each number of spe-
cies. Although this is only a small range of all possible
parameters, the values chosen are intended to be roughly
representative of those estimated in comparative studies
and are in no way unusual.

After the inclusion of eigenvectors, PVR model residuals
should not contain any phylogenetic signal (Diniz-Filho
et al. 1998). Therefore, to test the efficacy of the method
in removing phylogenetic signal, we calculated Pagel’s l

(Pagel 1999) for the PVR model residuals, using the ap-
proach described by Freckleton et al. (2002). This statistic
varies between 0 (no phylogenetic signal) and 1 (Brownian
motion). If the method removes all phylogenetic signal,
as claimed, then the statistic should equal 0. If it is different
from 0, then, in the case of Brownian error, the value of
l is the proportion of the phylogenetic signal that the
method has failed to remove.

The final analysis of the simulations dealt with the issue
of statistical errors: we calculated the probability of re-
jecting the null hypothesis when it is true (Type I error)
by testing the hypothesis that the observed slope was dif-
ferent from the true value (in all of our simulations, this
is assumed to be equal to 1). We did this with t-tests, using
the estimated value of the slope and its standard error and
the residual degrees of freedom. For the null model, the
frequency of rejection should equal the nominal P value
(we used the conventional threshold of ). The codeP p .05
for running the analyses reported is available from R. P.
Freckleton on request.

Results

GLS estimates are less variable than those obtained from
the PVR method (fig. 1). The variability in estimates be-
tween simulations is always lower for GLS than for PVR

(fig. 1a, 1b). When x is phylogenetically independent, the
GLS estimates have a variance that is ∼40% lower than
the estimates of the PVR model (fig. 1c). Averaging across
the simulations in figure 1c, the variance in estimates of
the slopes from the GLS model was 55% lower than that
estimated from the PVR model when x is phylogenetically
structured (fig. 1d). As expected, the results from the GLS
model are unaffected by the assumption about whether x
is phylogenetically structured.

Estimating parameters for the PVR model has a statis-
tical cost in terms of degrees of freedom. Each eigenvector
included in the final model consumes 1 df, as shown in
figure 1. This number increases as the size of the phylogeny
increases, so that the proportion of total degrees of free-
dom required to characterize the effect of the phylogeny
as sample size increases.

The low numbers of eigenvectors included in analyses
of small phylogenies largely results from a lack of power
to detect phylogenetic effects using P values in regression
selection (fig. 2a). For small to moderately sized phylog-
enies, the PVR approach does not remove all phylogenetic
signal, with the consequence that the residuals retain rel-
atively high values of l. One consequence is that, unless
phylogenies are large, these residuals cannot be concluded
to represent “species-specific” measures in any sense.

Type I error rates (i.e., probability of falsely rejecting
the null hypothesis when it is true) of the PVR approach
are high. Figure 2b and 2c shows Type I error rates for
GLS and PVR methods. PVR methods have elevated Type
I error rates relative to GLS methods largely because of
the variability in slope estimates.

In the appendix, we show that these results are robust
to the choice of model. For example, we show that the
results are essentially the same if we use an Ornstein-
Uhlenbeck model of trait evolution (Hansen 1997).

Discussion

Nonindependence is a common problem in statistical anal-
ysis, and techniques for dealing with nonindependence in
spatial and timeseries data are especially well known (e.g.,
Haining 1990; Chatfield 1996). In both of these disciplines,
a suite of techniques has been developed and a variety of
methods are routinely used. With comparative analysis, we
are in the unusual situation in that we can generate models
for trait evolution and predict what the expected covari-
ance in traits among species might be. The same is arguably
not true elsewhere. For example, spatial covariance is dif-
ficult to predict and might arise from a range of direct
and indirect drivers that have spatially complex distribu-
tions. Dealing with such covariation requires extensive
data exploration and modeling (e.g., Haining 1990; Dor-
mann 2007; Beale et al. 2010).

This content downloaded from 130.132.173.249 on Wed, 19 Feb 2014 13:44:23 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


E14 The American Naturalist

Figure 1: Comparisons of estimates of parameters, their variance, and residual degrees of freedom from generalized least squares (GLS)
and phylogenetic eigenvector regression (PVR) models. a, Estimates of mean value of the slope for the regression of y on x when there is
no phylogenetic signal in x for different-sized phylogenies. Error bars are 95% confidence intervals from 1,000 simulations. PVR estimates
are in black; GLS estimates are in red. b, As in a but when x possesses phylogenetic signal. c, Variance in parameter estimates in a and b
are compared. The variance in estimates from 1,000 simulations was calculated, and the values obtained from the PVR method were plotted
against those from the GLS models. The dashed line represents the 1 : 1 relationship. d, Error degrees of freedom from the models. The
dashed line is the GLS model; the points are means from the PVR method. In c and d, the filled circles are estimates from simulations in
which there was phylogenetic signal in x, and the open circles are simulations in which there is no phylogenetic signal in x.

In comparative analysis, on the basis of the predictions
of a Brownian model, the obvious starting point is to test
whether species trait differences scale linearly with evo-
lutionary distance or are independent of evolutionary dis-
tance (Garland et al. 1992; Freckleton et al. 2002; Freck-
leton and Harvey 2006). For one thing, the success of any
comparative model depends on the accuracy of the phy-
logeny and the ability of the phylogeny to describe the
data, so such tests are an important first step. From there,
more complex models can be developed if required: the
various transformations proposed in the literature (e.g.,

Grafen 1989; Hansen 1997; Pagel 1997, 1999; Hansen et
al. 2008; Lavin et al. 2008) can change the assumed mode
of trait evolution. However, in the case of the PVR, there
is no clear way to accommodate or interpret such changes.

One claimed advantage of the PVR method is that it
makes no assumptions about the evolutionary model that
generated the data. Indeed, there is no element of model
analysis or criticism in the PVR approach. However, this
also generates a weakness: because there is no null model
for the evolutionary process, there is no clear way to per-
form model criticism or diagnosis. GLS methods, includ-
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Figure 2: Phylogenetic signal in residuals and Type I error rates of
phylogenetic eigenvector regression (PVR) methods. a, Estimates of
Pagel’s l for residuals of PVR models from models based on phy-
logenies of different sizes and for data sets in which there is no
phylogenetic signal in x (open circles) and in which there is a phy-
logenetic signal in x (filled circles). b, c, Type I error rates for phy-
logenetic generalized least squares (PGLS; red symbols) and PVR
(black symbols) from data sets of varying sizes. In b there is no
phylogenetic signal in x, whereas in c there is a strong phylogenetic
signal in x.

ing the method of independent contrasts, have clear di-
agnostics and criteria for checking that the phylogenetic
and other aspects of the model are behaving appropriately
(e.g., Grafen 1989; Garland et al. 1992; Freckleton 2000,
2009). Because the PVR method does not state clearly the
expected behavior of the phylogenetic component of the
model, this is not possible to do. This conclusion is not
specific to the Brownian model: we also simulated using
Ornstein-Uhlenbeck models, and the PVR method per-
formed equally as poorly (see appendix for examples).

Our analysis in figure 2a is the first to test the efficiency
of the PVR method in removing known levels of phylo-
genetic signal. Rohlf (2001) pointed out that the PVR
method may be inefficient in doing this, and our results
indicate that appreciable phylogenetic signal may remain
in the residuals. It has been suggested that the PVR method
allows adaptive and nonadaptive variance in traits to be
separated, with the residual term from the overall model
representing the adaptive component of traits and the phy-
logenetic component representing nonadaptive compo-
nents (Diniz-Filho et al. 1998). This interpretation is prob-
lematic, because such a variance decomposition implicitly
assumes that most trait evolution is nonadaptive if traits
show strong phylogenetic signal. Hansen et al. (2008) give
an example, however, of how stabilizing selection on a
trait evolving to an optimum that is itself subject to Brown-
ian motion can give a distribution of traits that appears
to be Brownian; that is, there is no nonphylogenetic com-
ponent of trait variation. Our analysis, however, indicates
that the PVR method produces an incorrect variance de-
composition in any case (see also Adams and Church
2011).

The only conditions under which we have found the
PVR method to produce statistically nearly acceptable re-
sults is when there is no phylogenetic signal in the data
at all, including in the predictor, x (see appendix). Even
if there is a phylogenetic signal in x but not in the residuals,
the PVR approach fails to perform adequately. This, of
course, is far from ideal, as the intention is for the PVR
to allow a decomposition of the variance in the data into
phylogenetic and nonphylogenetic components. This ob-
viously cannot be achieved if the method is not reliable
in the presence of phylogenetic signal. The phylogenetic
generalized least squares approach works well in this sit-
uation if the l parameter of Pagel (1997, 1999) is used to
account for varying levels of phylogenetic signal in the
residuals (see appendix; see also simulations in Freckleton
et al. 2002).

The failure to specify a null model for trait evolution
belies a philosophy that the phylogenetic signal in the data
is purely a nuisance that is to be canceled out, with no
further regard for the mechanism or nature of this de-
pendence. As noted in the “Introduction,” this runs
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counter to current trends in ecology and evolutionary bi-
ology that emphasize the need for modeling data (e.g.,
Bolker 2008). Thus, if data show phylogenetic signal, or
if the data deviate from a null model in a systematic way,
then that is potentially of importance to the interpretation
and underlying hypotheses.

The PVR method has been suggested as a technique that
can deal simultaneously with both phylogenetic and spatial
dependence in comparative data (e.g., Kühn et al. 2009).
This is an important problem in comparative analysis, as
many traits vary spatially as well as with phylogeny, and
the question arises of how the spatial and phylogenetic
contributions to trait variance may be decomposed (Freck-
leton and Jetz 2009). A recent article by Beale et al. (2010)
compared the spatial analogue of the PVR method with
GLS and other spatial statistical techniques in ecological
analyses. They showed that the spatial eigenvector analysis
was not able to reliably remove signal from the data and
yielded more variable parameter estimates. Thus, the tech-
nique seems not to be best suited for either phylogenetic
or spatial problems, and on this basis it would not seem
to be a good option for dealing simultaneously with both.
This is a particularly important point to consider if using
these methods for predictions (e.g., Safi and Pettorelli
2010). Model-based methods would seem to offer more
promise for achieving that, including parameters that mea-
sure the partition in variance between spatial and phy-
logenetic effects (Freckleton and Jetz 2009). Moreover,
these alternative model-based techniques are computa-
tionally much more simple to implement.

In summary, the GLS method (in the widest sense) pre-
dates the PVR method in the comparative literature, has
been used extensively, has better statistical properties, and
is based on clear evolutionary models. The GLS method
forms the basis for models in other areas of genetics and
evolutionary biology, as well as in statistics. The PVR
method was developed for spatial statistics, but it is not
even widely used in that field, and recent evaluations in
ecology have shown that it does not perform well in com-
parison with GLS methods. On that basis we would rec-
ommend that alternative methods to PVR be explored.
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