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Variation in traits across species or populations is the outcome of both environmental and historical factors.

Trait variation is therefore a function of both the phylogenetic and spatial context of species. Here we

introduce a method that, within a single framework, estimates the relative roles of spatial and phylogenetic

variations in comparative data. The approach requires traits measured across phylogenetic units, e.g.

species, the spatial occurrences of those units and a phylogeny connecting them. The method modifies the

expected variance of phylogenetically independent contrasts to include both spatial and phylogenetic

effects. We illustrate this approach by analysing cross-species variation in body mass, geographical range

size and species-typical environmental temperature in three orders of mammals (carnivores, artiodactyls

and primates). These species attributes contain highly disparate levels of phylogenetic and spatial signals,

with the strongest phylogenetic autocorrelation in body size and spatial dependence in environmental

temperatures and geographical range size showing mixed effects. The proposed method successfully

captures these differences and in its simplest form estimates a single parameter that quantifies the relative

effects of space and phylogeny. We discuss how the method may be extended to explore a range of models

of evolution and spatial dependence.
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1. INTRODUCTION
Organisms are the dual products of the environment in

which they currently live and their evolutionary history.

Thus, species that live in similar environments, or have

similar ecologies, would be expected to have common

adaptations, and their similarity should be correlated with

spatial proximity (Cliff & Ord 1981; Ripley 1981; Borcard

et al. 1992; Legendre 1993; Legendre et al. 1997; Lennon

2000); similarly, closely related species would be expected

to show more similarity than those that are distantly

related because they share more common evolutionary

history (Ridley 1986; Harvey & Pagel 1991; Harvey &

Purvis 1991; Price 1997; Harvey & Rambaut 2000;

Freckleton & Harvey 2006). In other words, species’ traits

may be conserved across both space and phylogeny as a

consequence of selection for ecological adaptation and the

constraints of past evolutionary history. Potential ecologi-

cal or environmental determinants of trait variation may

similarly contain both phylogenetic (Grafen 1989; Westoby

et al. 1995; Diniz-Filho et al. 1998; Desdevises et al. 2003;

Wiens & Graham 2005) and spatial (Sokal 1983; Borcard

et al. 1992; Legendre 1993; Peres-Neto 2006) signals and

both need to be identified.

The comparative approach seeks to disentangle the

roles of such processes. In analyses looking at cross-species

variation in traits, similarity resulting from shared

evolution is regarded as a potentially confounding factor;

by incorporating phylogenetic information into compara-

tive analyses, it is possible to address these statistically
r for correspondence (r.freckleton@sheffield.ac.uk).

2 July 2008
6 August 2008 21
while analysing correlations between traits and the

environment in order to reveal environmentally driven

evolutionary patterns (Felsenstein 1985; Grafen 1989;

Harvey & Pagel 1991; Lynch 1991). The phylogenetic

component of trait variation is typically marginalized, so

that such approaches do not explicitly measure what

proportion of the variation in trait values in a clade is

driven by the environment relative to the proportion that is

explained by history. Consequently, it is not generally well

understood which of history or environment is more

important in determining trait variation across species.

Yet, the distinction between phylogenetically structured

and more plastic and environmentally driven trait

variations has gained new and particular importance in

the context of potential range shifts under climate change

(Ackerly 2003; Diniz-Filho & Bini 2008).

In analyses with a geographical focus, the importance

of spatial non-independence of data has become appreci-

ated, and various techniques have been developed to

address it (e.g. reviews by Clifford et al. 1989; Haining

1990; Legendre et al. 2002; Dormann et al. 2007). To

date, these approaches have found extensive use for

modelling the spatial abundance or richness of species

(Borcard et al. 1992; Lennon 2000; Jetz & Rahbek 2002;

Lichstein et al. 2002; Diniz et al. 2003; McPherson &

Jetz 2007), and also the spatial analysis of genetic variation

and diversity (Sokal & Oden 1978; Sokal et al. 1989;

Escudero et al. 2003).

Common to both phylogenetic and spatial analyses is

the problem of non-independence, and any process that

yields non-independence can result in unwelcome
This journal is q 2008 The Royal Society



Table 1. Possible alternative models of spatial versus phylogenetic effects. These could be used to replace equation (2.2)
in the text.

equation description

vijZ ð1KfÞpijCfdij variance is a linear function of spatial and phylogenetic distances; f measures the
relative contribution of each.

vijZ ð1KfÞpijCf expðadijÞ variance is a linear function of phylogenetic distance and an exponential function of
spatial distance. f measures the relative contribution of each; a models the change in
autocorrelation in space.

vijZ ð1KfÞpijCfda
ij variance is a linear function of phylogenetic distance and a power function of spatial

distance. f measures the relative contribution of each; a models the change in
autocorrelation in space.

vijZa½ð1KfÞpijCfdij �C ð1KaÞvm variance is a linear function of spatial and phylogenetic distances, plus a term
measuring the contribution of other effects (vm); f measures the relative contribution
of spatial and phylogenetic effects; a measures the relative contribution of the
spatialCphylogenetic versus other effects.
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correlation structures in data when confronted with

statistical methods that assume independence. In the

analyses of spatial and time-series data, it has been recogn-

ized that diagnosing and measuring such non-independence

is an important step in analysing and understanding data

(e.g. for overviews see Haining 1990; Chatfield 1996).

In those cases, model choice for the spatial pattern is often

not easy. By contrast, in comparative analysis, we have the

advantage that it is frequently possible to specify models of

trait evolution on the phylogeny (e.g. Hansen 1997; Pagel

1997, 1999; Felsenstein 2008) and hence tackle the source

of non-independence head-on.

As yet, there have been few attempts to synthesize

methods for measuring spatial and phylogenetic signals in

comparative datasets. Of course, many studies have looked at

how the effects of environmental drivers (e.g. latitude,

temperature, altitude) influence species’ traits (Ashton

et al. 2000; Freckleton et al. 2003; Blackburn & Hawkins

2004; McKechnie et al. 2006). However, spatial non-

independence can be pervasive: the influence of unmeasured

and hidden variables can dramatically affect the analyses

(Lennon 2000). Comparative biologists have developed a

suite of statistical techniques for analysing trait data

containing phylogenetic signal. Although the issue has been

recognized and possible methods discussed (e.g. Legendre

et al. 2004), so far none have considered how spatial effects

may be also included within a single statistical framework.

In this paper, we provide an illustration of the joint effects

of phylogenetic and spatial dependence on trait variation

across species, the 891 species of carnivores, even-toed

ungulates and primates of the world. We introduce a method

allowing the effects of phylogenetic and spatial processes to

be measured simultaneously, and show how it may be used

to reveal how spatial and phylogenetic factors simul-

taneously shape the evolution and distribution of traits.
2. MATERIAL AND METHODS
(a) Phylogenetic distribution of traits

The model of trait distribution we use is the Brownian model,

which forms the basis for many commonly employed

phylogenetic methods (Felsenstein 1985; Harvey & Pagel

1991; Martins & Hansen 1997; Pagel 1997, 1999). The

Brownian model is essentially a neutral model of trait

evolution in which changes in trait values occur continuously

and in which increases and decreases in traits are equally as

likely and independent of the current state. This is a simple

model; however, a range of more complex models can be
Proc. R. Soc. B (2009)
reduced to a Brownian form or accommodated in the same

framework (Hansen 1997; Pagel 1997). We consider a single

trait evolving among a set of n species. The state of the trait is

denoted by a vector x. Under the Brownian model, if t is the

time over which the trait is evolving, then Dx, the change in x,

is a multivariate normal (MVN) random deviate,

DxZMVNð0; s2StÞ; ð2:1Þ

where S is a (n!n) matrix proportional to the expected

variances and covariances for trait changes among species,

which are given by the shared path lengths on the phylogeny

(e.g. Martins & Hansen 1997; Pagel 1997), and s2 is the rate

at which variance accumulates per unit time. After T units of

time, x(T ) is a multivariate normally distributed with mean

x(0) and variance–covariance matrix s2ST.
(b) Phylogenetic contrasts

In order to develop the method for simultaneously incorpor-

ating spatial and phylogenetic effects, we estimated phyloge-

netic contrasts. This is a computationally efficient method for

fitting a Brownian model to comparative data and for estima-

ting the parameters of the Brownian process. The unstandardi-

zed contrasts (u) and their variances (v) are calculated following

the detailed algorithm given in Felsenstein (1985).
(c) Incorporating spatial effects

In order to model the spatial effect, we assume an analogous

linear variance model of spatial similarity and modify the

method of contrasts to account for additional processes

(see Garland et al. (1992) for an earlier discussion of the idea

of modifying contrasts). If dij is the spatial distance between

species i and j, and the phylogenetic distance is pij, then the

net variance for the distance between their traits is

vij Z ð1KfÞpij Cfdij : ð2:2Þ

In this model, f measures the relative contribution of

phylogenetic and spatial effects. A value of f equal to 0 is a

model in which there are only phylogenetic effects and a value

of 1 is the one in which there are only spatial effects.

According to this model, traits evolve as a function of both

phylogenetic and spatial distances. This model therefore

allows for closely related species to be geographically close

together, as would be expected in many datasets.

Alternative models are possible and we outline in table 1 a

series of simple functions varying in complexity, in terms of

nonlinearity and number of parameters that could be used in

applications of this approach. Exploratory analysis however
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indicated that the linear model worked well for the data that

we analysed (e.g. see below). In practice, we would

recommend that a range of functions are explored.

Equation (2.2) does not incorporate any non-spatial or

non-phylogenetic component to trait variance. To address this,

we simultaneously also used the l transformation suggested by

Pagel (1997, 1999). This transformation allows for phylogen-

etically uncorrelated variance, for example, resulting from

species-specific adaptation. This transformation is achieved by

lengthening the branches of the phylogeny leading to the tips

by a fraction relative to the internal branches. This is done by

multiplying the internal branches by l where usually 0!l!1.

A value of lZ0 indicates that there is no phylogenetic signal in

the trait and a value equal to 1 indicates that traits vary as

predicted by the Brownian model.

In the context of modelling spatial and phylogenetic effects

simultaneously, the l-statistic allows us to include trait

variation independent of both phylogeny and space in our

analysis. This is akin to including a ‘nugget’ in a spatial model

(e.g. Haining 1990).

(d) Estimation

Under the Brownian model, the expected distribution of

traits is a MVN distribution. This distribution has two

parameters, m, the weighted mean of the trait at the basal

node and, s2, the variance parameter. The distribution is

characterized by the expected variance–covariance matrix, V,

which is an n!n matrix. When only phylogenetic effects are

modelled, this is identical to S in equation (2.1). Because in

equation (2.2) the net variance is a linear combination of the

phylogenetic and spatial variances, when spatial and phylo-

genetic effects are combined, V is given by

V ðfÞZ ð1KfÞSCfW ; ð2:3Þ

where W is the variance–covariance matrix generated by the

spatial distribution of the observations. There are numerous

ways to generate W (for alternatives to the evolutionary model

of W we use, see Dormann et al. 2007). In the specific model

given by equation (2.2), it is assumed that the ancestor

originated a single point in space and that the degree of

variance between species that results from spatial proximity is

given by the accumulated distance between them, so that

entries of Ware the accumulated spatial distance from the root

until the most recent common ancestor of each pair of species.

For data x and variance matrix V(f), the log likelihood of

parameters f, m and s2 is

L½m; s2;f�ZK
1

2
n log ð2ps2ÞC logjV ðfÞj

�

C
ðxKmXÞTV ðfÞK1ðxKmXÞ

s2

�
: ð2:4Þ

In equation (2.4) X is the design matrix, in the case of a single

trait containing a column of 1 s. The theory of Felsenstein

(1973) shows that the multinormal log likelihood given by

equation (2.4) is exactly equal to

LZK
1

2
n logð2ps2ÞC

Xn
iZ0

log Vi C
u2
i

Vis
2

� � !
: ð2:5Þ

Equation (2.5) is the likelihood of the estimated changes

leading to the observed data according to the Brownian

process. The summation in equation (2.5) is across all of the

internal nodes of the phylogeny and is the sum of the log

likelihoods of the individual changes at each of the nodes. Vi is

the variance for node i, calculated according to the algorithm
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in Felsenstein (1985) to account for estimation error in the

ancestral traits. Although it is perfectly possible to maximize

equation (2.4) directly (and for some choices of W, this would

be the only approach), maximization based on equation (2.5)

is simpler because it does not require the inversion of the

variance matrix, which is potentially numerically inaccurate

and computationally inefficient. The parameters m and s2 are

estimated as the weighted mean trait value at the basal node

and the mean value of the squared standardized contrasts,

respectively, for a given value of f.

The spatial distances for internal nodes in equation (2.2)

were estimated using ancestral state reconstructions on the

phylogeny. We used the pic function in the R package

analysis of phylogenetics and evolution (APE; Paradis et al.

2004) to do this. When calculating contrasts, the spatial

distances and phylogenetic variances were scaled so that the

maximum was identical in each case.

In order to obtain the maximum-likelihood estimate of f,

we used a one-dimensional parameter search, employing the

optimize routine in the statistical package R (R Development

Core Team 2007). This is an implementation that uses a

combination of golden section and parabolic interpolation

algorithms (Brent 1973).

For the simultaneous estimation of l at the same time as f,

the analysis proceeds in the same way: the only extra step is

that the phylogeny is first transformed as described above.

The maximum likelihood is then found by jointly maximizing

over f and l. To do this, we used the optim function in R

employing the L-BRGS-B algorithm (Byrd et al. 1995) and

constraining the search to find optimum values of both f and

l between 0 and 1 as these parameters are generally undefined

outside this range. Previous simulations have shown that for

given V, maximum-likelihood values of the l-statistic can be

accurately tested against null values (0 and 1) using

likelihood-ratio tests (Freckleton et al. 2002).

In order to interpret the model including both parameters,

we note that when l is estimated at the same time as f,

equation (2.3) becomes (where h is a vector formed from the

leading diagonal of S representing the heights of the tips)

V ðf; lÞZ ð1KfÞ½ð1KlÞhClS�CfW : ð2:6Þ

Equation (2.6) can be written as

V ðf; lÞZghCl0SCfW : ð2:7Þ

In equation (2.7) gZ(1Kf)(1Kl) is the relative contribution

of effects independent of both phylogeny and space; l 0Z
(1Kf)l is the relative contribution of phylogeny and f is the

relative spatial effect. These composite parameters allow

simple interpretation of the joint estimates of f and l.

In equation (2.7) the sum of g, l 0 and f is always 1, therefore

these parameters can be interpreted as the individual

proportional contributions to variance of the different

components if S and W are appropriately scaled.
(e) Data for analysis

Spatial and environmental data used in the analysis were

based on the extent of occurrence range maps provided in

geographical information systems vector format by Ceballos

(for data sources and mapping methodology, see Ceballos

et al. 2005; Ceballos & Ehrlich 2006). We calculated

geographical range midpoints from latitudinal and longitudi-

nal extents of range maps and used them to characterize

the spatial distance of species data points to each other. For

the purpose of this analysis, we consider and analyse the
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Figure 1. Simulations to determine the extent of bias in the
estimate of f. A value of f close to 0 indicates that
the phylogenetic signal is stronger than the spatial signal
and a value close to 1 indicates that the spatial signal is
stronger. (a) Correspondence between observed and
simulated values. The dashed line is the line of 1 : 1. The
points represent data simulated for the different datasets used
in the analysis (n, carnivores; squares, artiodactyls; diamonds,
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following three attributes as ‘species traits’: geographical

range size (range size); the environmental temperature

characteristic for a species range (temperature); and a species’

typical body mass (body mass). We estimated range size (in

km2) directly from range maps in cylindrical equal area

projection and log-transformed data for analysis. The same

maps formed the basis for characterizing the broad-scale

temperature niche of species. Average annual temperature

data (in 8C) came from the Climatic Research Unit gridded

climatology 1961–1990 dataset (New et al. 2002) at native

10 min resolution and was log transformed. We resampled

both sets of data to 0.018 spatial resolution and extracted

range map occurrences and temperature map across a 55!

55 km2 equal area grid (in cylindrical equal area projection).

We then calculated for each species temperature as the average

environmental temperature across all grid cells it occupies.

Finally, we extracted body masses for 183 artiodactyls, 201

carnivores and 207 primates from Smith et al. (2003) and log-

transformed data for analysis (see source for details on body

size compilation). Phylogenetic relationships among species

of the three mammal clades came from select sources (Purvis

1995; Purvis et al. 1995; Bininda-Emonds et al. 1999; Price

et al. 2005; Vos & Mooers submitted) and were extracted as

subsets from the recently published mammalian supertree

(Bininda-Emonds et al. 2007). Tree resolution (internal

nodes/tips) was 0.76 for carnivores, 0.62 for artiodactyls and

0.73 for primates.

(f ) Simulations

We used simulations to validate the method for the datasets

that we analysed. We did this to determine the behaviour of

the estimator f in terms of its power and type I error rates. For

each node in the tree, we generated the phylogenetic variances

and geographical distances to form the net variances for

contrasts at nodes using the variances of the reconstructed

contrasts under the Brownian model. To generate simulated

data, we generated random normal deviates with mean zero

and variance given by equation (2.2), and with the given value

of f. We first used this simulation method to simulate

estimated values of f for known values of f between 0 and 1.

We also generated distributions of values of f, repeating

10 000 replicates for each of the three phylogenies.

primates). Simulated distributions of f under a true
distribution of (b) fZ0 and (c) fZ1.
3. RESULTS
(a) Simulations

There is generally a close correspondence between the

values of f estimated from simulated data with known

values (figure 1a). It is important to note, however, that at

the extremes there are small but influential biases: this is

unsurprising given that the value of f is restricted between

0 and 1. Consequently, any sampling error will yield some

degree of bias: overestimation would be expected at the

lower bound and underestimation expected at the higher

bound. The degree of bias varies between the phylogenies,

being the least for the carnivore dataset and slightly greater

for the other two.

As shown in figure 1, this bias leads to small but

important consequences for the simulated distributions of

funder truevalues offZ0 (figure 1b) orfZ1 (figure 1c).As

would be expected given the results in figure 1, the

distribution of f varies between datasets, particularly in the

case of simulated data under a true value of fZ0. The

reasons for this difference between the datasets probably are
Proc. R. Soc. B (2009)
that (i) the sizes of the datasets are different (albeit not vastly)

and (ii) there is error in the phylogeny and the extent of this

error varies between the datasets. In summary, these results

underline the importance of simulation methods to generate

sampling intervals for null values off for different datasets.
(b) Analysis of data

We conducted initial analyses using diagnostic plots

showing the value of the unstandardized contrasts as a

function of phylogenetic or spatial distance (figure 3).

These plots are comparable to variograms, with data

grouped into distance classes (e.g. Haining 1990). They

effectively visualize the apparently strong relationships

between phylogenetic distance and contrasts in body mass,

and between geographical distance and temperature

contrasts, with somewhat shallower slopes for range size.

The parameter f jointly quantifies the relative con-

tribution of phylogenetic and spatial effects, ranging

from 0 (phylogeny only) to 1 (space only). The estimated



Table 2. Estimates of parameters describing the relative effects of spatial and phylogenetic effects on traits in three orders of
mammals. As described in the text, these effects are estimated by fitting either a single parameter f that measures the relative
contributions of phylogenetic and spatial processes or a further parameter l that allows for a separate phylogenetic and non-
phylogenetic component to trait variation in addition to the spatial effect. The table shows the maximum-likelihood value of
f when estimated singly, as well as jointly estimated with l. Note that if the maximum-likelihood value of f is 1, then the value
of l cannot be estimated as fZ1 indicates that there is no non-spatial component to trait variation. The right-hand side of the
table lists the joint model where the composite parameters summarize the net relative effects of phylogeny l 0, spatial effects and
variation independent of both (see text for details).

single parameter both parameters composite parameters

f L f l L independent (g) phylogenetic (l 0) spatial (f)

carnivores mass 0.237 K91.51 0.237 1.000 K91.51 0.000 0.763 0.237
temp 1.000 K652.70 1.000 n.a. K652.70 0.000 0.000 1.000
range 0.505 K512.94 0.000 0.000 K477.83 1.000 0.000 0.000

artiodactyls mass 0.109 K78.59 0.109 1.000 K78.59 0.000 0.891 0.109
temp 1.000 K583.79 1.000 n.a. K583.79 0.000 0.000 1.000
range 0.908 K424.64 0.512 0.000 K399.73 0.488 0.000 0.512

primates mass 0.086 K29.50 0.071 0.999 K29.54 0.001 0.928 0.071
temp 0.983 K436.66 0.943 0.000 K421.17 0.057 0.000 0.943
range 0.844 K927.45 0.000 0.216 K887.52 0.784 0.216 0.000
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likelihood profiles of f illustrate the combined assessment

provided by this approach (figure 3). Table 2 summarizes

the maximum-likelihood values of estimated parameters.

Body mass yields a low maximum-likelihood value of f

confirming a dominant phylogenetic effect (figure 4a–c).

In all three cases, the maximum-likelihood value off is not

significantly different from 0. In turn, the maximum-

likelihood value of f for temperature is not significantly

different from 1 in any clade (figure 3d– f ), indicating that

the spatial dependence of species’ environmental tempera-

ture niche is considerably stronger than the phylogenetic

effect. This reflects the clear relationship between the

phylogenetic distance and the mean unstandardized

contrast values found for temperature in figure 2.

We additionally fitted l to the data that measure the

relative phylogenetic and non-phylogenetic components

of variance. For body mass and temperature, a model

including both f and l does not offer an improved fit. The

simple model given by equation (2.2) is thus sufficient to

describe the combined spatial and phylogenetic depen-

dence in these data. This means that the variation in traits

is explained best by either phylogenetic effects (body

mass) or spatial effects (temperature). In the case of

environmental temperature in artiodactyls, there was an

increase in log likelihood resulting from including l in the

model (increase in log likelihood of 15.5 units); however,

the resultant net effect was small (gZ0.057).

For range size we found very different patterns. For this

variable, a model including l in addition to f yielded

considerably better models (increase in log likelihood of

35.1 units in carnivores, 24.9 units in artiodactyls and

39.9 units in primates). This suggests that in this variable a

strong component of the trait variation was independent of

phylogeny or spatial effects. In carnivores, there was no

phylogenetic or spatial signal in the data (figure 4a). Range

size in artiodactyls showed no phylogenetic signal, with a

moderate amount of spatial signal (gZ0.488 and

fZ0.512; figure 4b). Finally, in the case of the primates,

there was a weak phylogenetic signal in the range sizes

(l 0Z0.216), but no spatial effect (figure 4c), and most

variation was independent of either (gZ0.784).
Proc. R. Soc. B (2009)
4. DISCUSSION

We have shown that across 591 mammal species, key traits

may often be significantly affected by both spatial and

phylogenetic factors, indicating the need for a joint rather

than separate assessment of these effects. We introduce a

method for such a joint measurement of phylogenetic and

spatial signals that are a simple and logical extension of

existing approaches. This integrative approach allows

questions about the role of environment and history to

be asked, which could not be addressed using separate

diagnostics provided by the existing techniques. Further-

more, this approach can be readily adapted to form the

basis for conducting comparative tests (e.g. regression,

analysis of variance and other linear models) that allow

both sources of non-independence to be controlled

for simultaneously.
(a) Autocorrelation versus direct effects

Whether we are examining phylogenetic or spatial effects,

an obvious issue is whether non-independence in data

should be modelled as the direct effect of predictors (e.g.

by regressing trait values onto a set of predictors) or

indirectly through expected covariance or autocorrelation

(as in the generalized least squares (GLS) model above).

The method we describe is readily expanded to consider

predictors of the trait of interest.

The distinction between models of autocorrelation and

those of direct effects of predictors is important as

frequently non-independence in data can be generated

by ‘hidden’ variables, so that as successive predictors are

added to an analysis, the degree of non-independence of

data may decrease (e.g. McKechnie et al. 2006). In the

model we employ, the non-independence is contained in

the residual portion of the variation in traits, so that if

predictors are used to directly explain residual variation,

the degree of independence of the residuals should

increase. Therefore, if the predictors are phylogenetically

or spatially non-independent, and these play a significant

role in determining trait values, the spatial or phylogenetic

components in traits can be directly explained.
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Figure 2. Variograms of the relationship between geographical or phylogenetic distance and trait variance. ((a) carnivores,
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and phylogenetic distances, respectively. The lines are regression lines. As with variograms, these plots are intended to be
illustrative only. The formal tests of the parameter values are shown in figures 3 and 4. Table 2 summarizes the analyses.
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In the analyses we report above, the aim was not to

explain the variation in traits by direct effects: although

this may be possible, at this point we simply sought to

measure the broad contribution of both space and

phylogeny to trait variation without asking what drives

this variation. This is informative in itself, for instance in

asking how the data are structured (e.g. as in figure 3), as

well as being a useful first step in developing more

complex analyses.

Neither space nor phylogeny can in themselves

generate a direct effect on trait values: the effects of either

have to be mediated through other variables, for example

through changes in the environment or species’ niches.

One issue that is likely to be important when considering

spatial effects is that the degree of overlap in species’

ranges will be an important factor in determining the

degree of similarity resulting from spatial proximity.

Including this is a more complex issue. The approach

that has been recently suggested by Felsenstein (2002,

2008) could be possibly adapted for such an analysis: in

this approach intraspecific variation is also modelled and
Proc. R. Soc. B (2009)
could be adapted to consider the within-species spatial

distribution of populations. In general, it would be

expected that the more species’ ranges overlap with each

other, the less important spatial proximity would be.

As with other comparable methods (e.g. the l-statistic

of Pagel 1999), the GLS methods we employ may be

adapted for considering the effects of predictor variables,

and f estimated simultaneously with fitting statistical

models (e.g. Freckleton et al. (2002) for an illustration of

how such a method would be developed). Such an

approach would be very useful in constructing analyses

in which the combined effects of spatial and temporal non-

independence are controlled for. The estimation of

parameters such as f to optimize a variance–covariance

matrix in GLS analysis is known as estimated generalized

least squares, and is known to be a very flexible technique

(e.g. Ives et al. 2007).

The only issue with developing multi-predictor

analyses is that the value of f would have to be interpreted

with caution: as outlined above, if the predictors in an

analysis were environmental predictors, and hence likely
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to be spatially correlated, it would be no surprise if the

spatial signal in the residuals of the analysis was weakened

leaving only phylogenetic signal. Consequently, f would

not be interpretable in an evolutionary sense in such

an analysis.
(b) Evolutionary interpretations

According to the Brownian model of trait evolution, the

differences between species traits grow linearly with

evolutionary time. Thus, closely related species are more

similar than distantly related ones. This model does not

preclude an adaptive component to trait evolution

(Blomberg et al. 2003): on the contrary, the model implies

that species traits are continually changing and, unless the

traits examined are neutral for the fitness of organisms,

this change presumably must have an adaptive basis and

be driven by changes to exogenous drivers.

If the value of f is close to 1, we can be sure that trait

evolution is being driven by geographical or environmental

factors unrelated to phylogeny. If fO0 then if two sister

species live close together they will be more similar than a

pair of species that split at the same time but live farther

apart. By contrast, if fZ0, geographical distance is

unimportant and only phylogenetic distance matters,

presumably with environment playing little role.

According to this interpretation, the value of f can be

informative about the degree to which species’ niches are

conserved or changed relative to geography or phylogeny.

A value of fO0 indicates that niches are changing faster

with respect to spatial variation than with evolutionary

distance and that this is changing traits faster than the null
Proc. R. Soc. B (2009)
Brownian model. Under such circumstances, the con-

clusion would be that traits and species niches are

more labile than is expected based on phylogenetic

distance alone.

Clearly, as indicated by the results in figures 3 and 4,

not all traits are under the same kind of selective pressure,

even for the same set of species. For the groups we have

analysed, body mass is closely associated with evolution-

ary distance; however, environmental temperature and

range size are much more closely allied to spatial factors.

The variance in responses indicated in figures 3 and 4 is a

clear evidence of mosaic evolution of species traits in

response to a suite of selective pressures: range size and

temperature are clearly a great deal more labile with

respect to environmental variation than is body size.

In the specific dataset we have analysed, there is a

question of whether variables such as range size and

temperature can be considered as traits (see also the

discussion of this in Freckleton et al. 2002), although the

literature clearly does. For example, in climate envelope

modelling (e.g. Thomas et al. 2004), the mean tempera-

ture at which a species exists is regarded as a fundamental

measure of a species’ niche and this seems a reasonable

measure of climate tolerance. Our finding is that the mean

temperatures at which species exist are more variable (with

respect to phylogeny) than predicted by the null model.

Although the sample on which we have based our

conclusion is small (three groups), if repeated more

widely, this finding would have important implications

for our understanding of how species evolve to respond to

changing environments.
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There has been a lively debate about how range size

evolves and whether species’ ranges are in some sense

‘heritable’ (e.g. Webb & Gaston 2003). Our analysis
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suggests how such debates can be addressed empirically by

measuring phylogenetic (i.e. heritable) and spatial

(i.e. non-heritable) components. In our data, it is clear

that the phylogenetic drivers of range size are weak and

that in at least two cases spatial effects are more dominant

(table 2; figure 4). In these data, the evidence is that range

size variation is driven by where species live rather than by

evolutionary history (and presumably therefore life

history). Indeed, the evidence that range size shows any

phylogenetic signal at all is weak (table 2) with the

conclusion being that range size is an extremely labile trait

with low heritability in these groups.

(c) Developing the method

As mentioned above, a suite of other methods exist,

particularly for conducting spatial analyses. Those most

commonly used in ecology and evolutionary biology are

summarized by Dormann et al. (2007). There exists a

range of very similar methods based on autocorrelation

models and GLS, typically employing a single parameter

to measure spatial dependence, with different approaches

varying in how the expected variance among species is

calculated. The spatial approach that we have taken is

essentially the same as the spatial GLS approach (e.g.

Dormann et al. 2007) and the single trait GLS model

including ls is essentially the same as this. Our approach is

therefore set firmly among conventional approaches to

measuring spatial dependence. Moreover, the method is

economical in that it involves the estimation of only one

parameter, although the approach is flexible enough that

more complex models can be constructed (table 1).

Moreover, the method is readily implemented using freely

available software (e.g. using the APE package; Paradis

et al. 2004).

Changes to the spatial model to account for different

assumptions and modes of trait variation are readily

incorporated. In order to distinguish between models,

likelihood ratio statistics, Akaike information criteria or

Bayesian information criteria (e.g. Burnham & Anderson

2002; Link & Barker 2006) or simulation approaches (as

above) could be used. For instance, highly parametrized

models of spatial variation could be incorporated. The

important consideration in doing so, however, is to

maintain a balance between the models of the two

processes. For example, if the model of spatial variation

is more complex than that of phylogenetic signal, it would

be sensible to compare the variation attributable to the two

directly, unless there were a priori reasons for employing

the more complex model.
5. CONCLUSIONS
We have shown that species trait shows a variety of

phylogenetic and spatial structures. Across 891 species of

mammals, body size is mainly correlated with phylogeny,

environmental temperature mainly a function of spatial

processes and range size shows intermediate responses.

Such a range of behaviour in a relatively small sample is

evidence that a combined phylogenetic and spatial

approach will be frequently warranted and that useful

information on the evolution of traits will be gained by

looking at both aspects of trait variation simultaneously.

We illustrate how widely used phylogenetic methods

can be adapted to also measure the strength of spatial
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dependence in comparative data. Such integrative assess-

ment of both phylogenetic and spatial effects on biological

variation is likely to facilitate more rigorous inference in

ecology, behaviour, conservation and global change biology.

The authors are indebted to Gerardo Ceballos, UNAM, for
allowing the use of mammal geographical range maps
compiled in his laboratory for this analysis. R.P.F. is funded
by a Royal Society University Research Fellowship. W.J.
gratefully acknowledges support by NSF (BCS—0648733).
R code for implementing the methods described is available
from R.P.F.
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