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ABSTRACT

 

Aim

 

Species distribution models (SDMs) or, more specifically, ecological niche models
(ENMs) are a useful and rapidly proliferating tool in ecology and global change biology.
ENMs attempt to capture associations between a species and its environment and are
often used to draw biological inferences, to predict potential occurrences in unoccupied
regions and to forecast future distributions under environmental change. The accuracy
of ENMs, however, hinges critically on the quality of occurrence data. ENMs often
use haphazardly collected data rather than data collected across the full spectrum of
existing environmental conditions. Moreover, it remains unclear how processes
affecting ENM predictions operate at different spatial scales. The scale (i.e. grain
size) of analysis may be dictated more by the sampling regime than by biologically
meaningful processes. The aim of our study is to jointly quantify how issues relating
to region and scale affect ENM predictions using an economically important and
ecologically damaging invasive species, the Argentine ant (

 

Linepithema humile

 

).

 

Location

 

California, USA.

 

Methods

 

We analysed the relationship between sampling sufficiency, regional
differences in environmental parameter space and cell size of analysis and resampling
environmental layers using two independently collected sets of presence/absence
data. Differences in variable importance were determined using model averaging
and logistic regression. Model accuracy was measured with area under the curve
(AUC) and Cohen’s kappa.

 

Results

 

We first demonstrate that insufficient sampling of environmental parameter
space can cause large errors in predicted distributions and biological interpretation.
Models performed best when they were parametrized with data that sufficiently
sampled environmental parameter space. Second, we show that altering the spatial
grain of analysis changes the relative importance of different environmental variables.
These changes apparently result from how environmental constraints and the
sampling distributions of environmental variables change with spatial grain.

 

Conclusions

 

These findings have clear relevance for biological inference. Taken
together, our results illustrate potentially general limitations for ENMs, especially
when such models are used to predict species occurrences in novel environments.
We offer basic methodological and conceptual guidelines for appropriate sampling
and scale matching.
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INTRODUCTION

 

Species distribution models (SDMs) or ecological niche models

(ENMs) are increasingly used to draw inferences about the determi-

nants of species occurrences, to generate predictions about species

distributions in novel regions and to forecast how distributions

may shift as a result of global change (Guisan & Zimmermann,

2000; Peterson, 2003, 2006; Guisan & Thuiller, 2005). A common

goal of these modelling efforts involves the production of a

statistical model that is general not only across the present global

distribution of a species but also across its future distribution.

The development of universally general models may be hindered

in a number of ways (Fielding & Bell, 1997; Pearson & Dawson,

2003). Mechanistically, ENMs are static models in that they

assume no changes in the fundamental niche of a species (Peterson,

2003). Methodologically, analyses must often contend with data

that cover only portions of the geographic range of a species:

incomplete samples may fail to encompass the full range of

environmental conditions present within a region (Fig. 1). When

such occurrence data are then used to parametrize ENMs, the

models may not be transferable to other regions or scales

(Guisan & Zimmermann, 2000; Pearson & Dawson, 2003;

Thuiller 

 

et al

 

., 2004; Randin 

 

et al

 

., 2006). Moreover, predictive

models cannot account for novel climates (Williams 

 

et al

 

., 2007).

These issues are exacerbated when independent data from a

different sampling regime are unavailable to robustly validate

model predictions (Araújo 

 

et al

 

., 2005). Each of these limitations

can confound inferences concerning the relative importance of

different abiotic constraints and result in inaccurate predictions

about occurrences. Given that ENM predictions will continue to

inform management decisions about the potential ranges of

introduced species and range shifts caused by global change, it is

imperative to develop a more quantitative understanding of

biases that result from sampling limitations.

Accurate predictions of species distributions based on

environmental conditions hinge on adequate sampling of

environmental variation (Gillison & Brewer, 1985). Because any

two geographical regions will differ both in the distribution

Figure 1 Conceptual diagram of issues that 
result from inter-regional disparities in 
environmental variation, insufficient 
sampling of environmental variation and 
coarsening of data across spatial grain. Biased 
sampling covers the full range of data but 
misrepresents parts of the gradient. 
Incomplete sampling fails to cover the 
range of the gradient.
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and range of their environmental variation, unrealistic model

extrapolations may result: (1) when the environmental profile of

the region into which predictions are being made does not match

that of the sampling region, or (2) when biased or incomplete

environmental sampling occurs (Fig. 1). Additional sampling

problems can result when environmental data collected at one

spatial grain are used to predict species occurrences at a different

grain (McPherson 

 

et al

 

., 2006). This circumstance may result

from scale-dependent changes in the sampling distribution

(Fig. 1) or mechanistically from changes in the importance of

environmental variables at different grains (Luoto 

 

et al

 

., 2007;

Whittingham 

 

et al

 

., 2007).

Because introduced species disrupt ecosystems and drain

financial resources, modelling their distributions now represents

an important part of ENM research. Predicting the potential

ranges of species actively undergoing range expansion presents

unique challenges and opportunities (Peterson, 2003). First,

biotic interactions can influence where species successfully

invade (Levine & D’Antonio, 1999; Bruno 

 

et al

 

., 2003), and these

interactions may alter the effects of environmental change on

patterns of species occurrence (Suttle 

 

et al

 

., 2007). Second,

obtaining accurate absence data for species that are actively

expanding their ranges is often impossible (Guisan & Thuiller,

2005). The lack of reliable absence data complicates interpretations

of the factors controlling species occurrence. Unlike the case for

ENMs that focus on species restricted to a single biogeographical

realm, however, modelling efforts that focus on widespread

introduced species can exploit cases where the native range and

multiple invaded regions can all be used to create spatially

independent tests of model predictions (Roura-Pascual

 

et al

 

., 2006; Fitzpatrick 

 

et al

 

., 2007). Distribution models for

introduced species now encompass a range of organisms

and spatial scales (Korzukhin 

 

et al

 

., 2001; Morrison 

 

et al

 

., 2004;

Rew 

 

et al

 

., 2005; Muñoz & Real, 2006).

Here we use two extensive, independently collected presence/

absence data sets for the Argentine ant (

 

Linepithema humile

 

)

in southern California to quantify the effects of incomplete

sampling and scale dependency on ENM accuracy. Other

studies have addressed questions relating to the performance of

different modelling techniques (Elith 

 

et al

 

., 2006; Pearson 

 

et al

 

.,

2006), the role of sample size (Stockwell & Peterson, 2002;

McPherson 

 

et al

 

., 2004) and the effects of spatial grain

(McPherson 

 

et al

 

., 2006; Guisan 

 

et al

 

., 2007). However, with one

exception (McPherson 

 

et al

 

., 2004), these studies rely either

on presence-only data (Kadmon 

 

et al

 

., 2003) or pseudo-absence

data (Roura-Pascual 

 

et al

 

., 2004, 2006; Fitzpatrick 

 

et al

 

., 2007).

Our study is distinct in that we use real presence/absence data

to simultaneously and comprehensively analyse how sampling,

scale and regional disparities affect ENM predictions for a

widespread invader. Specifically, we address the following

questions. (1) How does insufficient sampling of environmental

variation affect model predictions? (2) How transferable are

landscape-scale models created in different regions? (3) What is

the effect of spatial resolution (i.e. cell size of analysis and

resampling of environmental data) on the performance of

predictive variables?

 

METHODS

Study system

 

The Argentine ant is a widespread, abundant and ecologically

damaging invasive species (Holway 

 

et al

 

., 2002a). Native to central

South America (Tsutsui 

 

et al

 

., 2001; Wild, 2004), 

 

L. humile

 

 now

occurs worldwide, especially in areas with Mediterranean-type

climates (Suarez 

 

et al

 

., 2001). Argentine ants have been present in

California for approximately a century, but they only invade

areas with suitable levels of soil moisture (Ward, 1987; Holway,

2005; Menke & Holway, 2006). Biotic resistance from native ants

is at most a weak influence in determining where Argentine ants

invade in this region (Holway, 1998; Menke 

 

et al

 

., 2007). Because

of the close and well-understood correspondence between the

physical environment and Argentine ant occurrence, the lack of

biotic resistance from native ants and time since establishment,

this system is ideally suited to the goals of this study.

Several recent studies have predicted the potential distribution

of Argentine ants. Using presence-only data collected from

the native range, Roura-Pascual 

 

et al

 

. (2004) used the Genetic

Algorithm for Rule-set Prediction (GARP) to predict the global

distribution of Argentine ants under different climate change

scenarios. Roura-Pascual 

 

et al

 

. (2006) again used GARP with

presence-only data collected from different invaded regions to

predict 

 

L. humile

 

 distributions. Adopting a more mechanistic

approach, Hartley 

 

et al

 

. (2006) used the physiological tolerances

of the Argentine ant to develop a bioclimatic envelope model.

Although the resulting global distribution overlapped that

predicted by Roura-Pascual 

 

et al

 

. (2004), the model produced by

Hartley and colleagues yielded a broader potential distribution

on every continent considered. At a regional scale, Hartley &

Lester (2003) and Krushelnycky 

 

et al

 

. (2005) created predictive

models based on temperature-dependent colony growth in New

Zealand and Hawaii, respectively. Our study extends this body

of previous work in that we use two independently collected,

high-resolution presence/absence data sets to test limitations of

ENMs across both region and scale.

 

Sampling regions

 

To assess how differences in sampling environmental variation

affects model generality, we collected presence/absence data from

two adjacent and climatically similar regions of southern California

(Fig. 2), where Argentine ants are widespread. Our definition of

region is arbitrarily based on political boundaries; in fact both

sampling regions encompass the same climatological realms,

therefore 

 

a priori

 

 we expect models based on data collected in

either region to perform comparably. The first data set was collected

in the northern region (area 25,550 km

 

2

 

). This sampling effort

was initiated by researchers at UC San Diego (R. N. Fisher & T. J.

Case) and the US Geological Survey (USGS) to inventory reptiles

and amphibians in natural areas (Fisher 

 

et al

 

., 2002); an ant

sampling protocol was later added (Laakkonen 

 

et al

 

., 2001). The

northern region included 348 sites, 69 of which were invaded

(Fig. 2). The second data set was collected by S.B.M. in the southern
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region (22,584 km

 

2

 

). Sampling in this region was specifically

tailored to the environmental heterogeneity in the region and to

known patterns of Argentine ant occurrence. The southern

region included 399 sites, 139 of which were invaded by Argentine

ants. We split the data from the southern region into two roughly

equal-area data sets (south and central) to produce two separate,

well-sampled data sets, one for model training and one for testing

the models created by both the haphazardly and well-sampled

data sets (Fig. 2).

Sampling protocols differed between the two regions, but they

both yielded accurate information about Argentine ant presences

and absences. Because Argentine ants forage throughout the year,

displace nearly all above-ground foraging native ant species and

are strongly constrained by physical limitations in California’s

seasonally dry environment, it is possible to unambiguously

determine whether 

 

L. humile

 

 is present or absent (Ward, 1987;

Holway, 1995; Menke 

 

et al

 

., 2007). At each northern site, ants

were sampled using five pitfall traps configured like the five on a

die, with corner traps separated by 40 m. At all northern sites

classified as absences, no Argentine ants were captured in any

pitfall trap at that site. All northern sites were sampled four or

more times, including summer and winter, in each of 2 years

between 1999 and 2005.

To sample the full habitat and climate heterogeneity of

the southern region, we allocated sampling points to different

land-cover types based on their spatial extent and presumed

probability of 

 

L. humile

 

 occurrence given pitfall trap results from

the northern region. Land-cover types included agriculture,

barren ground, conifer, desert, hardwood, herbaceous, shrub

and urban; these land-cover types were further subdivided into

30 vegetation categories. We used Hawth’s analysis tools for

ArcGIS® to randomly place sampling points in each vegetation

category based on the proportion of the land-cover type

occupied by that category. To determine whether or not Argentine

ants were present at sites in the southern region, we used visual

surveys and bait transects (tuna baits placed every 5 m along two

50-m transects in the shape of a cross). We surveyed each site for

45 min or until we detected Argentine ants. Surveys took place in

the spring and summer of 2006. A random subset of survey sites

(

 

n

 

 

 

=

 

 40) in which Argentine ants were recorded as absent were

re-sampled at least 1 month later and no Argentine ants were

detected.

 

Environmental predictor layers

 

Potential predictor variables of Argentine ant occurrence

included a set of nine environmental layers selected from a range

of possible variables because of their common usage in biocli-

matic and ENMs and their putative importance in influencing

Argentine ant occurrence (Holway, 1998; Hartley 

 

et al

 

., 2006;

Menke & Holway, 2006; Roura-Pascual 

 

et al

 

., 2006; Menke 

 

et al

 

.,

2007). Climate variables included maximum July temperature

(

 

maxT

 

), minimum January temperature (

 

minT

 

), average annual

rainfall (

 

ppt

 

) and normalized difference vegetation index (

 

NDVI

 

).

 

MaxT

 

, 

 

minT

 

 and 

 

ppt

 

 are averages from 1966–95 at 1-km resolution

(Franklin 

 

et al

 

., 2001). 

 

NDVI

 

 was averaged from 16-day composites

(28 July–12 August) recorded between 2000 and 2002 at 250-m

resolution by the National Oceanic and Atmospheric Adminis-

tration’s (NOAA) advanced high-resolution radiometer satellite.

Habitat variables included land-cover type (

 

veg

 

, eight levels),

distance to intermittent water (

 

Iwater

 

) and distance to perennial

water (

 

Pwater

 

). 

 

Veg

 

 is based on the life-form category in the

Multi-source Land Cover Data (version 02_2) (resolution 100 m)

compiled by the California Department of Forestry and Fire

Protection. 

 

Iwater

 

 and 

 

Pwater

 

 were derived from high-resolution

data sets in the National Hydrography Database. Human-impact

variables included distance to agricultural area and distance to

nearest highway or urban area (

 

human

 

). These distances were

determined using the Multi-source Land Cover Data (version

02_2) and the US Census Bureau Tiger 2k (version 7 June 2002).

Figure 2 Map of southern California showing the distribution of Argentine ants in the northern and southern survey regions.
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All variables were re-sampled from their native resolution to

100-m resolution. We attempted to account for potential nonlinear

combinations of predictors by log (

 

x

 

 

 

+

 

 1) transforming all

continuous variables (except for 

 

minT

 

, which was log (

 

x

 

 

 

+

 

 10)

transformed). The 100-m spatial resolution was selected to

match that of the Argentine ant sampling points (all of which

were separated by at least 500 m) and the highest resolution

habitat data layers.

 

Occurrence models

 

We first identified the important predictors of Argentine ant

occurrence in the northern and southern regions separately. For

each of the nine environmental predictors, we performed logistic

regression (GLM, binary with logit link). For every predictor we

randomly selected two-thirds of the presences and absences

as training data. We then used three measurements of model

accuracy: area under the curve (AUC) of receiver operating

characteristic (ROC) plots, Cohen’s kappa and sensitivity and

specificity to quantify the predictive ability of every model in

each region with the remaining third of the data (Cumming,

2000; McPherson 

 

et al

 

., 2004). ROC plots were obtained by

plotting all sensitivity values on the 

 

y

 

-axis against their equivalent

(1 – specificity) values on the 

 

x

 

-axis. The resulting AUCs (which

range from 0 to 1 with ‘1’ indicating a perfect fit of the model,

and ‘0.5’ indicating randomness) provide a measure of model

accuracy that is independent of a particular probability cut-off

(Fielding & Bell, 1997). Cohen’s kappa records overall agreement

between predictions and observations, corrected for agreement

expected to occur by chance. Values range between –1 and 1 with ‘1’

indicating perfect agreement and values 

 

≤

 

 0 suggesting a

performance no different from random (Fielding & Bell, 1997).

The calculation of sensitivity/specificity and Cohen’s kappa

requires the transformation of probabilistic predictions of

occurrence into binary predictions of presence/absence; we used

a threshold of 0.5 for this transformation. Training and testing

were iterated 30 times and the average results are reported.

Variables with AUC values above 0.75 were considered to be

strong predictors (Swets, 1988; Hosmer & Lemeshow, 2000) of

Argentine ant occurrence, and those environmental predictors

were used in further analyses.

 

Model generality and ecological inference

 

Using simple logistic regressions, it remained unclear whether

the predictors that explain 

 

L. humile

 

 occurrence are the same

between regions and also how they should be combined to

create an overall multi-predictor model. This uncertainty arose

from high information overlap among certain predictors

(i.e. collinearity) (see Table S1 in Supporting Information). We

therefore used a model averaging technique described by Burnham

& Anderson (2002) to test how the relative fits of models containing

all possible combinations of predictors varied between regions.

This approach uses Akaike’s Information Criterion (AIC) to

compare the relative fits of a suite of candidate models (Stephens

 

et al

 

., 2005). The absolute size of the AIC is unimportant, instead

differences in AIC values among models indicate the relative

support for different models. For each model, we calculated an

‘Akaike weight,’ 

 

w

 

i

 

. For a set of models, the 

 

w

 

i

 

 sum to 1 and have a

probabilistic interpretation: of these models, 

 

w

 

i

 

 is the probability

that model 

 

i

 

 would be selected as the best-fitting model if the

data were collected again under identical circumstances. This

approach yields 95% confidence sets (i.e. the smallest subset of

candidate models for which the 

 

w

 

i

 

 sum to 0.95).

Using this model averaging approach we created 95%

confidence sets to determine how well data collected in one

region predict occurrence in the adjacent region. We calculated

separate confidence sets for the northern and southern regions

with the five environmental predictors with AUCs 

 

≥

 

 0.75 from

the simple logistic regression analyses. We also included 

 

NDVI

 

because of its demonstrated importance in previous distribution

models of Argentine ants (Roura-Pascual 

 

et al

 

., 2004; Roura-

Pascual 

 

et al

 

., 2006) and 

 

ppt

 

 because of the known importance

of soil moisture in determining 

 

L. humile

 

 distribution. The

performances of the best two models for each region were then

tested with data from the opposite region.

 

Model generality across spatial grain

 

We used data from the thoroughly sampled southern region to

determine how the spatial resolution of the analysis affects the

importance of different environmental predictors. First, we re-

sampled Argentine ant occurrence data and the seven environ-

mental layers used in the regional analyses (all data layers

were re-sampled from their native resolution) to three coarser

resolutions: 1 km, 5 km and 10 km. For each environmental

predictor, we then used Pearson’s chi-square goodness of fit tests

to compare the sampling distribution at each resolution to its

native distribution. At spatial grains coarser than 100 m, cells

with multiple samples were assigned a ‘presence’ value if any of the

subsamples included a presence. To assess the relative importance

of individual variables at each spatial grain, we used AUC values.

Confidence sets were then created for each spatial grain using all

combinations of the seven environmental predictors.

 

RESULTS

Sampling of environmental variation 

 

Region

 

We first evaluate how regional disparities in environmental

conditions and the thoroughness of sampling may bias ENM

predictions. Even though the north and south regions are

adjacent, span a north–south distance of 200 km and encompass

similar climatological realms (Fig. 2 & Fig. S1), the south and

central data sets from the southern region differ strikingly from

the northern region with respect to the frequency distributions

of particular environmental variables, e.g. 

 

maxT

 

 (central vs

north: 

 

χ

 

2

 

 

 

=

 

 630.35, d.f. 

 

=

 

 21, 

 

P

 

 < 0.001; southern vs north:

χ2 = 694.79, d.f. = 21, P < 0.001) (Fig. 3a). While the ranges of

maxT are similar among the three data sets, the distributions of
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maxT in the southern and central data sets more closely resemble

one another; both distributions exhibit strong bimodality with the

desert portions frequently experiencing temperatures exceeding

40 °C. The distribution of maxT for the northern region, in contrast,

is unimodal with temperatures averaging 32.7 °C. Insufficient

sampling of environmental conditions exacerbates these existing

regional disparities. Based on the sampled environmental variation

in our three data sets, insufficient sampling appears to be of greatest

concern in the northern region where sampled temperatures did

not exceed 37 °C, which was a modal temperature in the southern

region (Fig. 3b). Sampled localities for Argentine ants occurred

in areas beyond their physiological tolerances (Holway et al.,

2002b; Schilman et al., 2005) in each region (Fig. 3b).

Spatial grain

The ranges and frequency distributions of environmental

conditions vary with grain; this problem may further bias ENM

predictions. The distribution of NDVI in the southern region,

for example, becomes truncated and changes in shape when

the spatial resolution of analysis is coarsened from its native

resolution of 250 m to 10 km (χ2 = 202.17, d.f. = 16, P < 0.0001)

(Fig. 3c). These changes are reflected in shifts in the distributions

of sampled data; the distribution at 10 km resembles a mirror

image of the distribution at 250 m (Fig. 3d). Also, the range of

NDVI values associated with L. humile presences at 10 km (NDVI

70–140) is compressed compared with the distribution of values

at 250 m (NDVI 60–180) (χ2 = 44.21, d.f. = 16, P = 0.0002) (Fig. 3d).

Model performance

Region

The regional disparities in environmental variation summarized

in Fig. 3 result in diverging and erroneous model predictions. To

illustrate this problem, we examine model predictions for

L. humile occurrence that are based on the bioclimatic model

(y ~ maxT + minT + ppt + NDVI; see Hartley et al., 2006, and

Roura-Pascual et al., 2004 & 2006). When this model is

parametrized with data from the northern region and tested

with a subset of data from the northern region that was excluded

from model creation, the model performs well over all (AUC

0.909) but is weak in predicting Argentine ant presences

(sensitivity 0.587). Model predictions result in a disjointed

pattern of occurrence along the coast and in the interior deserts

(Fig. 4a). When the same model is transferred to the southern

region and tested with the well-sampled central data set,

performance is poor (AUC 0.650, sensitivity 0.311, specificity

0.746): this model predicts widespread Argentine ant occurrence

in many desert locations where L. humile does not occur, and it

fails to predict their presence along much of the coast where this

species is widespread and common (Fig. 4b). In contrast, when

the same bioclimatic model was parametrized with only the

southern data set, it performs well throughout the southern

region, both when tested with the excluds central data set (AUC

0.956) and when tested with a subset of the southern data set

(AUC 0.972) (Fig. 4c).

Spatial grain

As with the regional differences summarized in Fig. 3, disparities

in the frequency distributions of occurrence data and environ-

mental data also arise across changing spatial resolution. The

best AIC model created from the well-sampled southern region

predicts Argentine ant presence in urban environments at low

elevations irrespective of whether or not those locations are in

the desert (where L. humile has not been found) at both the 100-m

scale (the native resolution of habitat variables) and the 1-km

scale (the native resolution of the climate variables) (Fig. 5a). As

the spatial resolution is coarsened to 5 and 10 km, the best AIC

models increasingly predict more widespread Argentine ant

occurrence along the coastal plain (e.g. extending farther inland

Figure 3 Empirical distributions of maximum July temperature (°C) for (a) 1-km cells in each data set and (b) at every sampled location in 
each data set. Empirical distributions of normalized difference vegetation index (NDVI) in the southern region at (c) 250-m and 10-km 
resolution and (d) at every sampled location. Gray bars represent empirical distribution; black bars are presences; white bars are absences.
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Figure 4 Effects of region on predicted Argentine ant occurrence. Regional differences are based on a climate envelope GLM 
(y ~ maxT + minT + NDVI + ppt) that used occurrence data from (a) the northern region (N) to predict Argentine ant distribution in N, (b) N 
to predict Argentine ant distribution with the central data set (C), and (c) the southern data set (S) to predict Argentine ant distribution with C 
and S. Model performance within region (N to N and S to S) was evaluated with the remaining third of the data that were not included in model 
creation and results are the average of 50 iterations. All data from C were used to evaluate the northern and southern models. A threshold of 0.5 
was used to calculate sensitivity and specificity. maxT, maximum July temperature; minT, minimum January temperature; ppt, average annual 
precipitation; NDVI, normalized difference vegetation index.



Predicting species occurrences in novel environments

© 2008 The Authors 
Global Ecology and Biogeography, 18, 50–63, Journal compilation © 2008 Blackwell Publishing Ltd 57

Figure 5 Effects of spatial resolution on predicted Argentine ant occurrence. Differences in spatial resolution are based on the best Akaike 
Information Criterion (AIC) model parametrized with data from the southern region at (a) 100-m resolution 
(y ~ minT + NDVI + ppt + veg + Pwater), (b) 1-km resolution (y ~ minT + ppt + veg + Pwater + human), (c) 5-km resolution 
(y ~ maxT + minT + NDVI + ppt + human) and (d) 10-km resolution (y ~ minT + NDVI + ppt). The performance of each model was evaluated 
with occurrence data at the 100-m resolution. maxT, maximum July temperature; minT, minimum January temperature; ppt, average annual 
precipitation; NDVI, normalized difference vegetation index; veg, land-cover type; Pwater, distance to perennial water; human, distance to 
nearest highway or urban area.
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from the coast, consolidating in non-urbanized environments

where they were previously predicted to be absent and dis-

appearing from interior deserts (Fig. 5a–d)). Model performance

declines at coarser resolutions, mostly as a result of a decreased

ability to correctly predict Argentine ant absences.

Model generality and ecological inference

Region

To quantify how model generality changes among regions, we

compared the biological interpretations of models parametrized

in the insufficiently sampled northern region with those

from the well-sampled southern region. Despite the large number

of samples and the geographical proximity of the two survey

regions (Fig. 2 & Fig. S1), environmental predictors of Argentine

ant occurrence differed between the two regions (Table 1).

While minT, veg and human were strong predictors in both

regions, other predictor variables were unique to one region or

the other. MaxT was the best predictor in the southern region

(AUC = 0.91), but it only had a weak effect on occurrence in the

northern region (AUC = 0.69). Conversely, Pwater was a strong

predictor in the northern region (AUC = 0.77) but performed no

better than random in the southern region (AUC = 0.58). Even

though veg was important in both regions, parameter estimates

for two land-cover types shifted in sign from north to south:

hardwood tree (–1.82, 0.63) and herbaceous (–1.28, 0.74).

The importance of individual environmental predictors

(Table 1, Fig. S2) did not necessarily correspond to how often

those predictors appeared in model confidence sets from the

model averaging analyses (Fig. 6a). Though there was inter-

regional overlap in model confidence sets, models that were

shared between regions had a 62% probability of being selected

as the best model according to AIC in the southern region but

only a 23% probability of being the best model in the northern

region (Fig. 6c). Further, individual models parametrized in the

southern region performed somewhat better in the northern

region than did models created in the northern region and tested

in the southern region (Table S2).

Spatial grain

Model averaging analyses revealed that with coarsening spatial

grain all habitat predictors became less common in model con-

fidence sets, whereas climate predictors tended to become more

prevalent or to not change in frequency (Fig. 6b). For example,

NDVI appeared in a higher percentage of models at the coarsest

spatial scale, whereas veg and Pwater became less common in

model confidence sets (Fig. 6b). Human remained in at least

99% of all models until the 10-km spatial grain at which point

it occurred in only 36% of the models and also became an

unimportant univariate predictor (Fig. 6b, Table S4). Unlike the

model averaging results, no other predictors aside from human

changed in importance (0.75 AUC cut-off) at coarser spatial

resolutions (Table S4). The composition of confidence sets

changed dramatically with changes in spatial grain (Fig. 6d). The

extent to which model confidence sets overlapped with the

confidence set at the 100-m scale diminished with decreasing

spatial resolution to the point that by 10 km no models were

shared in common (Fig. 6d); a similar pattern held when the

analysis was re-run using the 1-km scale (i.e. the original scale of

the climate variables) as the smallest spatial resolution. This loss

in model overlap resulted in large part from habitat variables

decreasing in importance at coarser spatial grains (Fig. 6b). For

example, at the 100-m grain, the confidence set comprised

three models, each with at least six predictor variables, while at

the 10-km grain, the confidence set included 15 models, each

with only three important predictor variables (Table S3).

Table 1 Single-predictor logistic regressions for nine environmental variables used to predict Argentine ant occurrence. The best explanatory 
variables (AUC > 0.75) are highlighted in bold; parameter estimates that switched signs between regions are italicized. 

Region

Northern Southern

Variable AUC k/sens/spec Slope Intercept AUC k/sens/spec Slope Intercept

Maximum summer temperature (°C) 0.69 –0.01/0.00/0.99 –8.15 26.60 0.91 0.62/0.72/0.89 –22.28 76.61

Minimum winter temperature (°C) 0.91 0.47/0.48/0.94 26.62 –74.48 0.90 0.69/0.76/0.92 22.46 –61.43

NDVI 0.67 0.02/0.02/0.99 3.93 –20.28 0.46 0/0/1 0.09 –1.04

Precipitation (cm) 0.64 –0.01/0/0.99 3.76 –14.48 0.57 –0.22/0/0.81 0.97 –3.74

Land cover 0.80 0.54/0.47/0.98 Cat. Cat. 0.85 0.64/0.68/0.93 Cat. Cat.

Distance to intermittent water (m) 0.51 0/0/1 –0.19 1.40 0.70 0.05/0.11/0.94 –0.45 3.14

Distance to perennial water (m) 0.77 0.21/.018/0.97 –0.91 5.03 0.58 –0.05/0/0.96 0.22 –2.10

Distance to agricultural zone (m) 0.56 0.01/0.01/1 –0.26 0.63 0.55 0/0/1 0.10 –1.21

Distance to human modified area (m) 0.82 0.31/0.30/0.95 –0.91 4.20 0.88 0.54/0.62/0.90 –0.51 1.74

AUC, area under the curve; NDVI, normalized difference vegetation index; k = Cohen’s kappa; sens, sensitivity; spec, specificity; Cat., categorical. 

A threshold of 0.5 was used to calculate k, sens and spec.
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Changes in the predictive ability of different environmental

variables and in the frequency of their inclusion in model con-

fidence sets across spatial resolution may be related to how the

sampling distributions of different variables change with

coarsening spatial resolution (Fig. 3d). We performed a simple

analysis to test this idea. A significantly negative rank correlation

exists between the difference in predictive strength of a variable

[measured as ΔAUC = (the performance of a variable para-

meterized at 100 m resolution and tested at 10 km) – (its performance

at 100 m)] and the difference in its frequency distribution

between 10 km and 100 m (measured as the Pearson’s chi-square

goodness-of-fit values: Spearman rank correlation: ρ = –0.79,

P = 0.023). The same trend was confirmed for 100 m vs 5 km

(ρ = –0.82, P = 0.0362), but not for 100 m vs 1 km (ρ = –0.43,

P = 0.337). This association suggests that as the spatial resolution

is coarsened, the sampling distributions of habitat variables

become more compressed relative to those of climate variables.

The relatively reduced variability of habitat variables at coarser

spatial resolutions may restrict their predictive ability.

DISCUSSION

Efforts to model species distributions attempt to identify factors

that determine current range limits, to predict potential ranges of

actively spreading introduced species and to forecast future range

shifts resulting from climate change. The findings of our study

illustrate that caution is warranted when transferring ENMs to

new regions and in making biological inferences from ENMs. We

add nuance to such general caution by identifying two factors

that mediate the relative performance of models, namely space

and scale.

The two regions in our study are in close proximity, and we

obtained sizeable and accurate presence/absence data sets

for both regions (Fig. 2). We therefore expected that particular

environmental variables and patterns of Argentine ant occurrence

would exhibit similar relationships throughout the sampling

area. In contrast we found divergent environmental associations

in the two regions. While models performed reasonably well in

predicting occurrences within the region in which the models

were parametrized (e.g. AUC north = 0.909), we found that the

ability of those same models to accurately predict into adjacent

regions was poor (e.g. AUC north predicting south = 0.650).

The observer perspective, in terms of environments sampled,

determined the environmental associations identified: occur-

rences and their correlates were in the eye of the beholder, and

the generality of models beyond their training regions was poor.

Simply sampling with different levels of thoroughness (Figs 1 & 3b)

yielded multivariable models that differed in their composition,

ecological interpretation and ability to predict occurrence

(Fig. 6) (Table S1). These findings illustrate the importance of

Figure 6 Importance of model parameters across region and spatial grain. The proportion of models in the model averaging confidence sets 
that contained each predictor (a) between the northern and southern regions and (b) across spatial grains (southern region only). Amount of 
the Akaike information criterion (AIC) summed probability (wi) explained by model confidence sets comparing (c) northern and southern 
regions and (d) each spatial grain with 100-m spatial grain (southern region only).
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sufficiently sampling the multivariate environmental space not

only of the region in which the model is created but also in the

region into which predictions are being made.

Prediction errors resulting from disparities in sampling as well

as regional variation in environmental conditions are cause for

concern given that a key goal of ENMs involves accurately

predicting distributions outside the original study area and into

regions that may differ strongly in their environmental conditions

(Thuiller et al., 2004; Randin et al., 2006; Peterson et al., 2007).

Unfortunately, the accuracy of ENMs is usually assessed with

data collected from the same region or with a random subset of

the data that are withheld from model creation (Kadmon et al.,

2003; Elith et al., 2006; Bahn & McGill, 2007). The resulting

proximity of test data points to those used for training causes a

high spatial autocorrelation of both response and predictor

variables (Bahn & McGill, 2007). These associations compromise

statistical inference (i.e. model fit) and limit the interpretation of

model generality outside the environments sampled and, often with

that, outside the region studied. Our finding that incomplete

sampling led to poor model accuracy contrasts with results from

presence-only models, for which weaker model performance can

occur when the full extent of species distributions are sampled

(Kadmon et al., 2003). This discrepancy may be caused by differences

in model prediction error from omission to commission that

result from the increasing ratio of presence-to-absence points in

a sample (McPherson et al., 2004). These findings underscore the

necessity of using independently collected data to gauge model

accuracy (Fielding & Bell, 1997). Recent modelling efforts have

begun to use occurrence data from widely disparate regions

(often different continents) to study model transferability

(Roura-Pascual et al., 2006; Fitzpatrick et al., 2007; Peterson

et al., 2007). Our results demonstrate that one potential risk with

this approach concerns the error associated from building a

model based on sampling of the environmental gradient in one

region and then transferring that model to another region in

which the environmental gradient is not represented.

We find that when models are not parametrized for the

environmental gradient in a particular region, large errors in the

predicted species distribution can result (Fig. 4). Studies that

attempt to predict the spread of introduced species must

confront such problems when they consider independent regions

with distinct and often non-overlapping distributions of

environmental conditions, or when they use data sets that differ

in the resolution of environmental data layers or in the resolution

at which occurrence data are recorded (Roura-Pascual et al., 2006;

Fitzpatrick et al., 2007). These problems may be compounded in

studies that attempt to predict range shifts caused by global

change because climate predictions call for the appearance of

environments with no present analogue (Pearson & Dawson,

2003; Williams et al., 2007). These issues may be further compli-

cated when ENMs are used to predict range shifts of introduced

species that have altered their niche requirements following

establishment in a novel environment (Urban et al., 2007).

In addition to issues related to sufficient sampling and

independently collected data, model accuracy can also be

affected by the scale of analysis. While model performance

did not decline with spatial scale as dramatically as it did between

regions, the predicted spatial extent of Argentine ant occurrence

did change dramatically (Fig. 5). Factors constraining the occurrence

of taxa change with scale (McPherson et al., 2006; Luoto et al.,

2007), but with such changes so does a researcher’s ability to isolate

these key factors. The representation of environmental conditions

in data used for model parametrization is scale dependent (Figs 1

& 3d). In general, coarsening the spatial grain of data tends to

decrease model performance (McPherson et al., 2006; Guisan

et al., 2007). In our analyses, for example, a loss of model accuracy

apparently resulted from an increase in the over-prediction of

occurrences (Fig. 5), which were caused in large part by the

diminishing importance of habitat variables with increasing

grain (Fig. 6b). Recent studies have also noted that habitat

variables, as well as variables influenced by anthropogenic activity,

often decrease in explanatory power at coarser spatial grains

(Luoto et al., 2007; Pautasso, 2007; Whittingham et al., 2007).

This form of scale dependence may be related to the size of species

ranges: narrowly ranging or specialist taxa may be more strongly

associated with fine-grain habitat variables, compared to how

more wide-ranging species or generalists respond to environ-

mental variation (McPherson et al., 2004; Menéndez et al.,

2007). With respect to the Argentine ant, a species strongly

limited by its environmental tolerances, patterns of occurrence

at the local scale in southern California strongly depend on

fine-scale differences in soil moisture (Holway, 2005; Menke &

Holway, 2006; Menke et al., 2007). This association weakens at

coarser spatial grains when climatic factors assume greater

importance (Fig. 5b). Changes in the relative importance of

environmental variables with spatial grain result from a combi-

nation of changes in the sampling distribution of a variable and

its scale-dependent performance. Taken together, these findings

illustrate that care should be exercised to match the spatial

resolution of predictions to the environmental correlates used to

create the models (Karl et al., 2000; McPherson et al., 2006).

CONCLUSIONS

In this study, we systematically analysed how the accuracy of

model predictions and the inferences drawn from them hinge on

sufficient sampling, independently collected data from different

regions and the spatial grain of environmental variables. Model

predictions were strongly influenced by the thoroughness of

sampling (Figs 3 & 4). Moreover, we found that variables changed

in importance at different spatial resolutions: climatic factors

became more important at coarser resolutions, while habitat

variables became less important. These results are due in part to

changes in the sampling distribution and in the performance of

variables at different spatial resolutions. In the light of these

findings, we recommend that efforts to model species distributions:

(1) use both presence and absence data when appropriate, (2) sample

across the environmental tolerance of a species, (3) sufficiently

sample the environmental parameter space of the region into

which predictions will be made, (4) test model predictions in a

distinct region with independently collected data, (5) use variables

at the appropriate spatial grain, and (6) make model predictions



Predicting species occurrences in novel environments

© 2008 The Authors 
Global Ecology and Biogeography, 18, 50–63, Journal compilation © 2008 Blackwell Publishing Ltd 61

at the same spatial resolution as model parametrization. Exercising

appropriate levels of caution in efforts to model species distribu-

tions will increase the likelihood that the interpretations and

predictions of SDMs are biologically meaningful.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online

version of this article:

Table S1 Pearson correlation matrix for the seven environmental

variables used to predict Argentine ant occurrence in the model

averaging analysis.

Table S2 Model averaging analysis of the regional confidence sets.

Table S3 Model averaging analysis of the spatial grain confidence sets.

Table S4 Single predictor effects of seven environmental variables

on Argentine ant occurrence at four different spatial grains using

logistic regression.

Figure S1 Empirical distributions of the four dominant environ-

mental variables.

Figure S2 Effects of the seven environmental predictors used in

the model averaging analysis on the probability of Argentine ant

occurrence using data from the southern region.

Please note: Wiley-Blackwell are not responsible for the content

or functionality of any supporting materials supplied by the

authors. Any queries (other than missing material) should be

directed to the corresponding author for the article.
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